Learn R Programming

MESS (version 0.5.12)

qpcr: Gene expression from real-time quantitative PCR

Description

Gene expression levels from real-time quantitative polymerase chain reaction (qPCR) experiments on two different plant lines. Each line was used for 7 experiments each with 45 cycles.

Arguments

Format

A data frame with 630 observations on the following 4 variables.

flournumericFluorescence level
linefactorPlant lines rnt (mutant) and wt (wildtype)
cyclenumericCycle number for the experiment
transcriptfactorTranscript used for the different runs

References

Morant, M. et al. (2010). Metabolomic, Transcriptional, Hormonal and Signaling Cross-Talk in Superroot2. Molecular Plant. 3, p.192--211.

Examples

Run this code

data(qpcr)

#
# Analyze a single run for the wt line, transcript 1
#
run1 <- subset(qpcr, transcript==1 & line=="wt")

model <- nls(flour ~ fmax/(1+exp(-(cycle-c)/b))+fb,
             start=list(c=25, b=1, fmax=100, fb=0), data=run1)

print(model)

plot(run1$cycle, run1$flour, xlab="Cycle", ylab="Fluorescence")
lines(run1$cycle, predict(model))

Run the code above in your browser using DataLab