Learn R Programming

MESS (version 0.5.7)

qpcr: Gene expression from real-time quantitative PCR

Description

Gene expression levels from real-time quantitative polymerase chain reaction (qPCR) experiments on two different plant lines. Each line was used for 7 experiments each with 45 cycles.

Arguments

Format

A data frame with 630 observations on the following 4 variables.

flour numeric Fluorescence level
line factor Plant lines rnt (mutant) and wt (wildtype)
cycle numeric Cycle number for the experiment
transcript factor Transcript used for the different runs

References

Morant, M. et al. (2010). Metabolomic, Transcriptional, Hormonal and Signaling Cross-Talk in Superroot2. Molecular Plant. 3, p.192--211.

Examples

Run this code
# NOT RUN {
data(qpcr)

#
# Analyze a single run for the wt line, transcript 1
#
run1 <- subset(qpcr, transcript==1 & line=="wt")

model <- nls(flour ~ fmax/(1+exp(-(cycle-c)/b))+fb,
             start=list(c=25, b=1, fmax=100, fb=0), data=run1)

print(model)

plot(run1$cycle, run1$flour, xlab="Cycle", ylab="Fluorescence")
lines(run1$cycle, predict(model))

# }

Run the code above in your browser using DataLab