Learn R Programming


title: "MFSIS"

Description

An implementation of popular screening methods that are commonly employed in ultra-high and high dimensional data. Through this publicly available package, we provide a unified framework to carry out model-free screening procedures including SIS (Fan and Lv (2008) [doi:10.1111/j.1467-9868.2008.00674.x]), SIRS(Zhu et al. (2011)[doi:10.1198/jasa.2011.tm10563]), DC-SIS (Li et al. (2012) [doi:10.1080/01621459.2012.695654]), MDC-SIS(Shao and Zhang (2014) [doi:10.1080/01621459.2014.887012]), Bcor-SIS (Pan et al. (2019) [doi:10.1080/01621459.2018.1462709]), PC-Screen (Liu et al. (2020) [doi:10.1080/01621459.2020.1783274]), WLS (Zhong et al.(2021) [doi:10.1080/01621459.2021.1918554]), Kfilter (Mai and Zou (2015) [doi:10.1214/14-AOS1303]), MVSIS (Cui et al. (2015) [doi:10.1080/01621459.2014.920256]), PSIS (Pan et al. (2016) [doi:10.1080/01621459.2014.998760]), CAS (Xie et al. (2020) [doi:101080/01621459.2019.1573734]), CI-SIS (Cheng and Wang (2022) [doi:10.1016/j.cmpb.2022.107269]), and CSIS (Cheng et al. (2023) [doi:10.1007/s00180-023-01399-5]).

Installation

install.packages("MFSIS")

Example

Here are many extensive examples that can let you quickly learn how to use this package. The author's original intention in writing this package is ease of use. Here is a simple example to illustrate its use. For example, I want to use SIRS method to screen high-dimensional data. I want to get the most active 30 features.

library(MFSIS)
n=100;
p=200;
pho=0.5;
data=gendata1(n,p,pho)
data=cbind(data[[1]],data[[2]])
colnames(data)[1:ncol(data)]=c(paste0("X",1:(ncol(data)-1)),"Y")
data=as.matrix(data)
X=data[,1:(ncol(data)-1)];
Y=data[,ncol(data)];
A=SIRS(X,Y,30);A

Copy Link

Version

Install

install.packages('MFSIS')

Monthly Downloads

247

Version

0.3.0

License

GPL (>= 2)

Maintainer

Xuewei Cheng

Last Published

March 18th, 2025

Functions in MFSIS (0.3.0)

GendataPM

Generate simulation data (Discrete response data based on poisson model)
GendataTM

Generate simulation data (Complete data based on transformation model)
MDCSIS

Martingale Difference Correlation and Its Use in High-Dimensional Variable Screening
GendataMRM

Generate simulation data (Multivariate response models)
SIRS

Model-Free Feature Screening for Ultrahigh Dimensional Data
MFSIS

Model-free feature screening procedures
MVSIS

Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis
get_arccos

Arccos function
projection_corr

Projection correlation function
req_py

Detect Python Module
SIS

Sure Independent Screening
PCSIS

Model-Free Feature Screening Based on the Projection Correlation
Kfilter_fused

The fused kolmogorov filter: a nonparametric model-free screening method
PSIS

Ultrahigh-Dimensional Multiclass Linear Discriminant Analysis by Pairwise Sure Independence Screening
Simdata

Generate simulation data (The unified class framework to generate simulation data)
WLS

A Model-free Variable Screening Method Based on Leverage Score
GendataIM

Generate simulation data (Complete data for intersection variables)
CISIS

Model-Free Feature screening Based on Concordance Index for Ultra-High Dimensional Categorical Data
Cor

Parallel function This is a parallel function about the projection correlation.
BcorSIS

A Generic Sure Independence Screening Procedure
GendataAFT

Generate simulation data (Survival data based on the accelerated failure time model)
CAS

Category-Adaptive Variable Screening for Ultra-High Dimensional Heterogeneous Categorical Data
GendataCox

Generate simulation data (Survival data based on the Cox model)
GendataGP

Generate simulation data (Complete data with group predictors)
DCSIS

Feature Screening via Distance Correlation Learning
CSIS

Model-Free Feature screening Based on Concordance Index Statistic
Kfilter_single

The Kolmogorov filter for variable screening in high-dimensional binary classification
GendataLGM

Generate simulation data (Binary category data based on logistic model)
GendataLDA

Generate simulation data (Categorial based on linear discriminant analysis model)
Kfilter

The Kolmogorov filter for variable screening
GendataLM

Generate simulation data (Complete data based on linear models)