Learn R Programming

MInt (version 1.0.1)

estimate: Estimate parameters

Description

This function performs iterative conditional modes to obtain maximum a posteriori estimates for $\beta$ (covariate coefficients), $w$ (latent abundances), and $P$ (the precision matrix).

Usage

estimate(mfit)

Arguments

mfit
- a MInt model object.

Value

A MInt model object with the following attributes:
optim
List containing optimization details
optim$lambda
Value of the L1 penalty used during optimization
data
List containing the raw data
data$design
File path of the design matrix
data$response
File path of the response matrix
data$fmla
Formula used to model each response in terms of the design variables
data$y
Raw numerical data for the response matrix
data$xd
Design matrix in categorical form
data$x
Design matrix in numerical form
param
List containing parameter estimates
param$beta
p-covariates x o-responses matrix of regression coefficients
param$w
n-samples x o-responses matrix of latent abundances
param$P
o-responses x o-responses precision matrix

Examples

Run this code
x <- system.file("extdata", "x.txt", package="MInt");
y <- system.file("extdata", "y.txt", package="MInt");
m <- mint(y,x,fmla = ~feature1 + feature2)
m <- estimate(m)

Run the code above in your browser using DataLab