Usage
fMMalgo(M, G, data, Id=NULL, Wweight_SR=NULL, Wdist_LR=NULL, posterior_proba=NULL,
formula_reg, offset_reg=NULL, family=gaussian(link="identity"), prior_theta="kmeans", prior_sigma=NULL,
formula_group=NULL, prior_prevalence=FALSE, prior_proba=NULL,
test.GR=FALSE, sigma_GR="auto", proba_GR=NULL, proba_GRseed=NULL, seed=NULL, n.order=3,
test.ICM=FALSE, rho_ICM="init", G_ICM=1:G, prior_prevalenceICM=TRUE, rho_max=10, update_rho=FALSE,
test.ICMregional=FALSE, coords=NULL, nbGroup_min=100, threshold_potential=0.1, distance_ref=NULL,
multiV=FALSE, digit.pmin=7, epsilon=10^(-3), epsilon_corrSpat=epsilon*10, iter_max=100,
trace=TRUE, trace_iter=FALSE, trace_radius=FALSE, export.predicteur=FALSE)
Arguments
M
The number of responses variable. integer
.
G
The number of groups to be considered for the mixture. integer
.
data
A dataframe containing the data. data.frame[n,p]
.
Id
The identifier of the images to segment. character vector[n]
. Default is NULL
indicating a unique identifier for all voxels.
Wweight_SR
The local neighborhood matrix. dgCMatrix[n,n]
. Should be normalized by row (i.e. rowSums(Wweight_SR)=1
). Only used if test.GR
or test.ICM
is true
.
Wdist_LR
The regional neighborhood matrix. dgCMatrix[n,n]
. Should contain the distances between the observations (0
indicating infinite distance). Only used if both test.ICM
and test.ICMregional
are true
formula_reg
A list of formula corresponding to the reponse model of each group for each response variable. list[[M]][[G]]
.
offset_reg
A list of offset corresponding to each reponse model. list[[M]][n,G]
. Default is NULL
indicating no offset.
family
A list of families corresponding to the response model of each group for each response variable. list[[M]][[G]]
.
prior_theta
Initialisation of the means of each group means by random sampling (NULL
), kmeans ("kmeans"
) or user defined values (list[[M]][G]
).
prior_sigma
Initialisation of the standard deviation of each group by dividing the total variance by G
(NULL
), by the standard deviation of the kmeans groups ("kmeans"
) or by user defined values (list[[M]][G]
).
posterior_proba
Initialisation of the posterior membership probabilities to user defined values (matrix[n,g]
). Ignored if NULL
.
formula_group
A formula for the concomitant model (formula
). Else (NULL
) indicates no concomittant model.
prior_prevalence
Should a prior based on the prevalence of each group be used ? logical
.
prior_proba
Initialisation of the prior membership probabilities to user defined values (matrix[n,g]
) or to uninformative values (NULL
).
test.GR
Should Growing Region algorithm be performed ? logical
.
sigma_GR
Maximum variance of the Growing Region. Can be set to a user defined value (numeric
) or estimated by the variance of group G ("auto"
).
proba_GRseed
Seeds with group probability membership below proba_GRseed
are excluded from the initialisation step of the GR algorithm. numeric
. Ignored if NULL
.
proba_GR
Minimum probability membership to group G required for an observation to be a candidate for the GR. numeric
. Ignored if NULL
.
seed
(T/F
) or (1/0
) indicating the seeds to be used in the GR algorithm. logical vector[n]]
. Can alternatively contains the name of a column in data (character
).
n.order
The penalization for the voxels outside the lesion group defined by the growing region algorithm (bandwith of the gaussian kernel). numeric
. Default is 3
.
test.ICM
Should local/regional regularization be performed ? logical
.
rho_ICM
Value of the spatial regularisation parameters : can be fixed a priori (numeric
if test.ICMregional=F and numeric vector[2]
if test.ICMregional=T) or estimated ("init"
).
G_ICM
Potential group merging for the regularization step (interger[G]
) where each element must be inferior or equal to G.
prior_prevalenceICM
Should a prior based on the prevalence of each group be used for estimation of the regularization paramters ? logical
. Default is FALSE
.
rho_max
Maximum possible rho value (numeric
), minimum is 0. Only used if rho_ICM="init"
.
update_rho
Should rho be re-estimated using the posterior probabilites at each step ? logical
.
test.ICMregional
Should regional regularization be performed ? logical
. test.ICM
must be also T to be active.
coords
Coordinates (matrix[n,.]
) or the name of columns in data (character vector[.]
) giving the observation coordinates.
nbGroup_min
The minimum group size of the spatial groups required for performing regional regularization. integer
. Default is 100
.
threshold_potential
The minimum value of the posterior probability for group G for being considered as lesioned when forming the spatial groups. numeric
.
distance_ref
The distance defining the several neighborhood orders relatively to Wdist_LR
. numeric vector[.]
.
multiV
Should the regional potential range be specific to each spatial group ? logical
. Default is FALSE
.
digit.pmin
Below 10^{-digit.pmin}
the posterior probability is set to 0. integer
epsilon
Convergence occurs when the relative variation of the log-likelihood or of the parameter values between two iterations is below epsilon
. numeric
epsilon_corrSpat
Spatial regularization begins when the relative variation of the log-likelihood or of the parameter values between two iterations is below epsilon_corrSpat
. numeric
.
iter_max
Maximum number of EM iterations. integer
. Default is 100
.
trace
Should initialisation and final EM estimations be displayed ? logical
. Default is TRUE
.
trace_iter
Should estimations be displayed at each EM iteration ? logical
. Default is FALSE
.
trace_radius
Should the radius of the spatial groups be displayed at each EM iteration ? logical
. Default is FALSE
.
export.predicteur
Should the fitted glm models be exported or only their summary ? logical
. Default is FALSE
.