Learn R Programming

MSBVAR (version 0.9-2)

plot.forc.ecdf: Plots VAR forecasts and their empirical error bands

Description

Plots mean VAR forecasts and pointwise error bands

Usage

"plot"(x, probs = c(0.05, 0.95), xlab = "", ylab = "", ylim = NA, ...)

Arguments

x
N x nstep matrix of forecasts
probs
width of error band probabilities, default is 90% quantiles or c(0.05,0.95)
xlab
x-axis labels
ylab
y-axis labels
ylim
Bounds for y-axis in standard format c(lower,upper)
...
other plot parameters

Value

None.

Details

Plots the mean forecast and the pointwise empirical confidence region for a posterior sample of VAR forecasts.

See Also

plot.forecast

Examples

Run this code
## Not run: 
# data(IsraelPalestineConflict)
# 
# # Fit a BVAR model
# fit.BVAR <- szbvar(IsraelPalestineConflict, p=6, z=NULL, lambda0=0.6,
#                    lambda1=0.1, lambda3=2, lambda4=0.5, lambda5=0,
#                    mu5=0, mu6=0, nu=3, qm=4, prior=0,
#                    posterior.fit=FALSE)
# 
# # Generate unconditional forecasts for both models
# forecast.BVAR <- uc.forecast(fit.BVAR, nsteps=12,
#                                  burnin=100, gibbs=1000)
# 
# # Plot the forecasts
# par(mfrow=c(2,1))
# 
# plot(forecast.BVAR$forecast[,,1], probs=c(0.16,0.84),
#                main="I2P Forecast")
# abline(h=0)
# 
# plot(forecast.BVAR$forecast[,,2], probs=c(0.16,0.84),
#                main="P2I Forecast")
# abline(h=0)
# ## End(Not run)

Run the code above in your browser using DataLab