szbvar
, szbsvar
and, msbvar
(and their posterior samplers).
posterior.fit(varobj, A0.posterior.obj=NULL, maxiterbs=500)
varobj
= output from a call to
szbvar
. For a BSVAR model, varobj
= output from
a call to szbsvar
. For MSBVAR models,
varobj
= output from a call to gibbs.msbvar
. gibbs.A0
The computations are done using compiled C++ and Fortran code as of version 0.3.0. See the package source code for details about the implementation.
Chib, Siddartha. 1995. "Marginal Likelihood from the Gibbs Output." Journal of the American Statistical Association. 90(432): 1313--1321. Waggoner, Daniel F. and Tao A. Zha. 2003. "A Gibbs sampler for structural vector autoregressions" Journal of Economic Dynamics \& Control. 28:349--366.
Fruhwirth-Schnatter, Sylvia. 2006. Finite Mixture and Markov Switching Models. Springer Series in Statistics New York: Springer., esp. Sections 5.4 and 5.5.
szbvar
,
szbsvar
,
gibbs.A0
,
gibbs.msbvar
, and
print.posterior.fit
for a print method.
## Not run:
# varobj <- szbsvar(Y, p, z = NULL, lambda0, lambda1, lambda3, lambda4,
# lambda5, mu5, mu6, ident, qm = 4)
# A0.posterior <- gibbs.A0(varobj, N1, N2)
# fit <- posterior.fit(varobj, A0.posterior)
# print(fit)
# ## End(Not run)
Run the code above in your browser using DataLab