MSGARCH_SPEC object on a set of observations.
fit.mle(spec, y, ctr = list())create.spec.do.init : Boolean indicating if there is a pre-optimization with the R package DEoptim (Ardia et al., 2011). (Default: do.init = FALSE)
NP : Number of parameter vectors in the population in DEoptim optimization. (Default: NP = 200)
itermax : Maximum iteration (population generation) allowed in DEoptim optimization. (Default: maxit = 200)
theta0 : Starting value for the chain (if empty the specification default value are used).
do.enhance.theta0 : Boolean indicating if the default parameters value are enhance using y variance. (Default: do.enhance.theta0 = TRUE)
MSGARCH_MLE_FIT containing five components:
theta : Optimal parameters (vector of size d).
log_kernel : log-kernel of y given the optimal parameters.
spec : Model specification of class MSGARCH_SPEC created with create.spec.
is.init : Indicating if estimation was made with do.init option.
y : Vector (of size T) of observations.
MSGARCH_MLE_FIT contains these methods:
AIC : Compute Akaike information criterion (AIC).
BIC : Compute Bayesian information criterion (BIC).
ht : Conditional volatility in each regime.
kernel : Kernel method.
unc.vol : Unconditional volatility in each regime.
pred : Predictive method.
pit : Probability Integral Transform.
risk : Value-at-Risk And Expected-Shortfall methods.
simahead : Step ahead simulation method.
sim : Simulation method.
pdf : Probability density function.
cdf : Cumulative function.
Pstate : State probabilities filtering method.
summary : Summary of the fit.
nloptr (Johnson, 2014) for main optimizer
while it uses the R package DEoptim when do.init = TRUE as an initialization for nloptr.
The starting parameters are the specification default parameters.
The argument do.enhance.theta0 uses the volatilities of rolling windows of y and adjust the starting parameters of
the specification so that the unconditional volatility of each regime
is set to different quantiles of the volatilities of the rolling windows of y.
DEoptim. R Journal, 3, pp. 27-34Ardia, D. Mullen, K. M. Peterson, B. G. & Ulrich, J. (2015). DEoptim: Differential Evolution in R. https://cran.r-project.org/package=DEoptim
Mullen, K. M. Ardia, D. Gil, D. L. Windover, D. Cline, J.(2011) DEoptim: An R Package for Global Optimization by Differential Evolution. Journal of Statistical Software, 40, pp. 1-26, DOI: http://dx.doi.org/10.18637/jss.v040.i06
Johnson, S. G. (2014). The NLopt Nonlinear-Optimization. https://cran.r-project.org/package=nloptr.
# load data
data("sp500")
sp500 = sp500[1:1000]
# create model specification
spec = MSGARCH::create.spec()
# fit the model on the data with ML estimation using DEoptim intialization
set.seed(123)
fit = MSGARCH::fit.mle(spec = spec, y = sp500)
summary(fit)
Run the code above in your browser using DataLab