MTE: Maximum Tangent Likelihood Estimation
Overview
The package provides several robust estimation methods for linear regression under both fixed and high dimesional settings. The methods include Maximum Tangent Likelihood Estimator (MTE
and MTElasso
) (Qin et al., 2017+), Least Absolute Deviance Estimator (LAD
and LADlasso
) and Huber estimator (huber.reg
and huber.lasso
).
Installation
devtools::install_github("shaobo-li/MTE")
Example
library(MTE)
n=200; d=50
X=matrix(rnorm(n*d), nrow=n, ncol=d)
beta=c(rep(2,6), rep(0, 44))
y=X%*%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100))
beta0=MTE(y, X, rep(0,50), 0.1, 2)$beta
output.MTELasso=MTElasso(y,X, p=2, beta.ini=beta0, t=seq(0, 0.1, 0.01), method="MTE")
beta.est=output.MTELasso$beta
References
Qin, Y., Li, S., Li, Y., & Yu, Y. (2017). Penalized maximum tangent likelihood estimation and robust variable selection. arXiv:1708.05439.