Learn R Programming

MTE: Maximum Tangent Likelihood Estimation

Overview

The package provides several robust estimation methods for linear regression under both fixed and high dimesional settings. The methods include Maximum Tangent Likelihood Estimator (MTE and MTElasso) (Qin et al., 2017+), Least Absolute Deviance Estimator (LAD and LADlasso) and Huber estimator (huber.reg and huber.lasso).

Installation

devtools::install_github("shaobo-li/MTE")

Example

library(MTE)
n=200; d=50
X=matrix(rnorm(n*d), nrow=n, ncol=d)
beta=c(rep(2,6), rep(0, 44))
y=X%*%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100))
beta0=MTE(y, X, rep(0,50), 0.1, 2)$beta
output.MTELasso=MTElasso(y,X, p=2, beta.ini=beta0, t=seq(0, 0.1, 0.01), method="MTE")
beta.est=output.MTELasso$beta

References

Qin, Y., Li, S., Li, Y., & Yu, Y. (2017). Penalized maximum tangent likelihood estimation and robust variable selection. arXiv:1708.05439.

Copy Link

Version

Install

install.packages('MTE')

Monthly Downloads

549

Version

1.0.2

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Shaobo Li

Last Published

March 22nd, 2022

Functions in MTE (1.0.2)

huber.lasso

Huber-Lasso estimator
MTElasso

MTE-Lasso estimator
LADlasso

LAD-Lasso for Linear Regression
LAD

Least Absolute Deviance Estimator for Linear Regression
huberloss

Huber Loss
huber.reg

Huber estimation for linear regression
MTE

Maximum Tangent-likelihood Estimation