MTE: Maximum Tangent Likelihood Estimation
Overview
The package provides several robust estimation methods for linear regression under both fixed and high dimesional settings. The methods include Maximum Tangent Likelihood Estimator (MTE and MTElasso) (Qin et al., 2017+), Least Absolute Deviance Estimator (LAD and LADlasso) and Huber estimator (huber.reg and huber.lasso).
Installation
devtools::install_github("shaobo-li/MTE")Example
library(MTE)
n=200; d=50
X=matrix(rnorm(n*d), nrow=n, ncol=d)
beta=c(rep(2,6), rep(0, 44))
y=X%*%beta+c(rnorm(150), rnorm(30,10,10), rnorm(20,0,100))
beta0=MTE(y, X, rep(0,50), 0.1, 2)$beta
output.MTELasso=MTElasso(y,X, p=2, beta.ini=beta0, t=seq(0, 0.1, 0.01), method="MTE")
beta.est=output.MTELasso$betaReferences
Qin, Y., Li, S., Li, Y., & Yu, Y. (2017). Penalized maximum tangent likelihood estimation and robust variable selection. arXiv:1708.05439.