powered by
Computes the forecast error variance decomposition of a VARMA model
FEVdec(Phi, Theta, Sig, lag = 4)
VAR coefficient matrices in the form Phi=[Phi1, Phi2, ..., Phip], a k-by-kp matrix.
VMA coefficient matrices in form form Theta=[Theta1, Theta2, ..., Thetaq], a k-by-kq matrix.
The residual covariance matrix Sigma, a k-by-k positive definite matrix.
The number of lags of forecast errors variance to be computed. Default is 4.
Impulse response matrices
Orthogonal impulse response matrices
Forecast error variance matrices
Forecast error variance decomposition
Use the psi-weight matrices to compute the forecast error covariance and use Cholesky decomposition to perform the decomposition
Tsay (2014, Chapter 3)
# NOT RUN { p1=matrix(c(0.2,-0.6,0.3,1.1),2,2) theta1=matrix(c(-0.5,0,0,-0.6),2,2) Sig=matrix(c(3,1,1,1),2,2) m1=FEVdec(p1,theta1,Sig) names(m1) # }
Run the code above in your browser using DataLab