Learn R Programming

MVB (version 1.1)

stepfit: step-wisd multivariate model fitting

Description

stepwise fit multivariate log-linear Bernoulli model using Newton-Raphson algorithm.

Usage

stepfit(x, y, maxOrder = 2, output = 0, direction = c("backward", "forward"), tune = c("AIC", "BIC", "GACV", "BGACV"), start = NULL)

Arguments

x
input design matrix.
y
output binary matrix with number of columns equal to the number of outcomes per observation.
maxOrder
maximum order of interactions to be considered in outcomes.
output
with values 0 or 1, indicating whether the fitting process is muted or not.
direction
the mode of stepwise search and default is backward.
tune
tuning approach, available methods including AIC, BIC, GACV, BGACV.
start
starting object of type mvbfit.

Value

An object of class mvbfit, for which some methods are available.

Details

The stepfit utilize the class structure of the underlying C++ code and stepwisd fitted the model with Newton-Raphson algorithm.

See Also

mvblps, unifit, stepfit, mvb.simu

Examples

Run this code
# fit a simple MVB log-linear model
n <- 1000
p <- 5
kk <- 2
tt <- NULL
alter <- 1
for (i in 1:kk) {
  vec <- rep(0, p)
  vec[i] <- alter
  alter <- alter * (-1)
  tt <- cbind(tt, vec)
}
tt <- 1.5 * tt
tt <- cbind(tt, c(rep(0, p - 1), 1))

x <- matrix(rnorm(n * p, 0, 4), n, p)
res <- mvb.simu(tt, x, K = kk, rep(.5, 2))
fitMVB <- mvbfit(x, res$response, output = 1)

Run the code above in your browser using DataLab