Learn R Programming

MVar (version 2.2.7)

Multivariate Analysis

Description

Multivariate analysis, having functions that perform simple correspondence analysis (CA) and multiple correspondence analysis (MCA), principal components analysis (PCA), canonical correlation analysis (CCA), factorial analysis (FA), multidimensional scaling (MDS), linear (LDA) and quadratic discriminant analysis (QDA), hierarchical and non-hierarchical cluster analysis, simple and multiple linear regression, multiple factor analysis (MFA) for quantitative, qualitative, frequency (MFACT) and mixed data, biplot, scatter plot, projection pursuit (PP), grant tour method and other useful functions for the multivariate analysis.

Copy Link

Version

Install

install.packages('MVar')

Monthly Downloads

512

Version

2.2.7

License

GPL-3

Maintainer

Paulo Cesar Ossani

Last Published

April 18th, 2025

Functions in MVar (2.2.7)

MFA

Multiple Factor Analysis (MFA).
LocLab

Function for better position of the labels in the graphs.
DataQuan

Quantitative data set
MDS

Multidimensional Scaling (MDS).
GrandTour

Animation technique Grand Tour.
DataQuali

Qualitative data set
MVar-package

Multivariate Analysis.
GSVD

Generalized Singular Value Decomposition (GSVD).
IM

Indicator matrix.
FA

Factor Analysis (FA).
NormData

Normalizes the data.
PP_Optimizer

Optimization function of the Projection Pursuit index (PP).
Plot.FA

Graphs of the Factorial Analysis (FA).
Plot.MFA

Graphics of the Multiple Factor Analysis (MFA).
PCA

Principal Components Analysis (PCA).
PP_Index

Function to find the Projection Pursuit indexes (PP).
Plot.Cor

Plot of correlations between variables.
Plot.CA

Graphs of the simple (CA) and multiple correspondence analysis (MCA).
Plot.CCA

Graphs of the Canonical Correlation Analysis (CCA).
NormTest

Test of normality of the data.
Plot.PCA

Graphs of the Principal Components Analysis (PCA).
Plot.Regr

Graphs of the linear regression results.
Regr

Linear regression.
Plot.PP

Graphics of the Projection Pursuit (PP).
Scatter

Scatter plot.
CA

Correspondence Analysis (CA).
DataCoffee

Frequency data set.
Cluster

Cluster Analysis.
DataMix

Mixed data set.
DataInd

Frequency data set.
DataFreq

Frequency data set.
CoefVar

Coefficient of variation of the data.
CCA

Canonical Correlation Analysis(CCA).
DA

Linear (LDA) and quadratic discriminant analysis (QDA).
Biplot

Biplot graph.