#simulate a dataset with continuous data
dataset <- matrix(runif(1000 * 100, 1, 1000), nrow = 1000 )
#the target feature is the last column of the dataset as a vector
target <- dataset[, 100]
dataset <- dataset[, -100]
results <- testIndSpearman(target, dataset, xIndex = 44, csIndex = 67)
results
#require(gRbase) #for faster computations in the internal functions
#define class variable (here the last column of the dataset)
target <- 99;
#run the SES algorithm using the testIndSpearman conditional independence test
sesObject <- SES(target, dataset, max_k = 3, threshold = 0.05, test = "testIndSpearman");
sesObject <- SES(target, dataset, max_k = 3, threshold = 0.05, test = "testIndFisher");
#print summary of the SES output
summary(sesObject);
#plot the SES output
plot(sesObject, mode = "all");
Run the code above in your browser using DataLab