Learn R Programming

MachineShop (version 2.8.0)

expand_modelgrid: Model Tuning Grid Expansion

Description

Expand a model grid of tuning parameter values.

Usage

expand_modelgrid(x, ...)

# S3 method for formula expand_modelgrid(x, data, model, info = FALSE, ...)

# S3 method for matrix expand_modelgrid(x, y, model, info = FALSE, ...)

# S3 method for ModelFrame expand_modelgrid(x, model, info = FALSE, ...)

# S3 method for recipe expand_modelgrid(x, model, info = FALSE, ...)

# S3 method for TunedModel expand_modelgrid(x, ..., info = FALSE)

Arguments

x

input specifying a relationship between model predictor and response variables. Alternatively, a TunedModel object may be given first followed optionally by an input specification.

...

arguments passed to other methods.

data

data frame containing observed predictors and outcomes.

model

TunedModel object.

info

logical indicating whether to return model-defined grid construction information rather than the grid values.

y

response variable.

Value

A data frame of parameter values or NULL if data are required for construction of the grid but not supplied.

Details

The expand_modelgrid function enables manual extraction and viewing of grids created automatically when a TunedModel is fit.

See Also

TunedModel

Examples

Run this code
# NOT RUN {
expand_modelgrid(TunedModel(GBMModel, grid = 5))

expand_modelgrid(TunedModel(GLMNetModel, grid = c(alpha = 5, lambda = 10)),
                 sale_amount ~ ., data = ICHomes)

gbm_grid <- ParameterGrid(
  n.trees = dials::trees(),
  interaction.depth = dials::tree_depth(),
  size = 5
)
expand_modelgrid(TunedModel(GBMModel, grid = gbm_grid))

rf_grid <- ParameterGrid(
  mtry = dials::mtry(),
  nodesize = dials::max_nodes(),
  size = c(3, 5)
)
expand_modelgrid(TunedModel(RandomForestModel, grid = rf_grid),
                 sale_amount ~ ., data = ICHomes)

# }

Run the code above in your browser using DataLab