Learn R Programming

MachineShop (version 2.8.0)

models: Models

Description

Model constructor functions supplied by MachineShop are summarized in the table below according to the types of response variables with which each can be used.

Function Categorical Continuous Survival
AdaBagModel f
AdaBoostModel f
BARTModel f n S
BARTMachineModel b n
BlackBoostModel b n S
C50Model f
CForestModel f n S
CoxModel S
CoxStepAICModel S
EarthModel f n
FDAModel f
GAMBoostModel b n S
GBMModel f n S
GLMBoostModel b n S
GLMModel f m,n
GLMStepAICModel b n
GLMNetModel f m,n S
KNNModel f,o n
LARSModel n
LDAModel f
LMModel f m,n
MDAModel f
NaiveBayesModel f
NNetModel f n
PDAModel f
PLSModel f n
POLRModel o
QDAModel f
RandomForestModel f n
RangerModel f n S
RFSRCModel f m,n S
RFSRCFastModel f m,n S
RPartModel f n S
SurvRegModel S
SurvRegStepAICModel S
SVMModel f n
SVMANOVAModel f n
SVMBesselModel f n
SVMLaplaceModel f n
SVMLinearModel f n
SVMPolyModel f n
SVMRadialModel f n
SVMSplineModel f n
SVMTanhModel f n
TreeModel f n
XGBModel f n S
XGBDARTModel f n S
XGBLinearModel f n S
XGBTreeModel f n S

Categorical: b = binary, f = factor, o = ordered Continuous: m = matrix, n = numeric Survival: S = Surv

Models may be combined, tuned, or selected with the following meta-model functions.

StackedModel Stacked regression
SuperModel Super learner
SelectedModel Model selection from a candidate set
TunedModel Model tuning over a parameter grid

Arguments

See Also

modelinfo, fit, resample