Learn R Programming

MachineShop (version 2.8.0)

summary: Model Performance Summaries

Description

Summary statistics for resampled model performance metrics.

Usage

# S3 method for ConfusionList
summary(object, ...)

# S3 method for ConfusionMatrix summary(object, ...)

# S3 method for MLModel summary( object, stats = MachineShop::settings("stats.Resamples"), na.rm = TRUE, ... )

# S3 method for Performance summary( object, stats = MachineShop::settings("stats.Resamples"), na.rm = TRUE, ... )

# S3 method for PerformanceCurve summary(object, stat = MachineShop::settings("stat.Curve"), ...)

# S3 method for Resamples summary( object, stats = MachineShop::settings("stats.Resamples"), na.rm = TRUE, ... )

Arguments

object

confusion, lift, trained model fit, performance, performance curve, or resample result.

...

arguments passed to other methods.

stats

function, function name, or vector of these with which to compute summary statistics.

na.rm

logical indicating whether to exclude missing values.

stat

function or character string naming a function to compute a summary statistic at each cutoff value of resampled metrics in PerformanceCurve, or NULL for resample-specific metrics.

Value

An object of summmary statistics.

Examples

Run this code
# NOT RUN {
## Requires prior installation of suggested package gbm to run

## Factor response example

fo <- Species ~ .
control <- CVControl()

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)
summary(gbm_res3)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
summary(res)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab