Model constructor functions supplied by MachineShop are summarized in the table below according to the types of response variables with which each can be used.
Function | Categorical | Continuous | Survival |
AdaBagModel | f | ||
AdaBoostModel | f | ||
BARTModel | f | n | S |
BARTMachineModel | b | n | |
BlackBoostModel | b | n | S |
C50Model | f | ||
CForestModel | f | n | S |
CoxModel | S | ||
CoxStepAICModel | S | ||
EarthModel | f | n | |
FDAModel | f | ||
GAMBoostModel | b | n | S |
GBMModel | f | n | S |
GLMBoostModel | b | n | S |
GLMModel | f | m,n | |
GLMStepAICModel | b | n | |
GLMNetModel | f | m,n | S |
KNNModel | f,o | n | |
LARSModel | n | ||
LDAModel | f | ||
LMModel | f | m,n | |
MDAModel | f | ||
NaiveBayesModel | f | ||
NNetModel | f | n | |
ParsnipModel | f | m,n | S |
PDAModel | f | ||
PLSModel | f | n | |
POLRModel | o | ||
QDAModel | f | ||
RandomForestModel | f | n | |
RangerModel | f | n | S |
RFSRCModel | f | m,n | S |
RFSRCFastModel | f | m,n | S |
RPartModel | f | n | S |
SurvRegModel | S | ||
SurvRegStepAICModel | S | ||
SVMModel | f | n | |
SVMANOVAModel | f | n | |
SVMBesselModel | f | n | |
SVMLaplaceModel | f | n | |
SVMLinearModel | f | n | |
SVMPolyModel | f | n | |
SVMRadialModel | f | n | |
SVMSplineModel | f | n | |
SVMTanhModel | f | n | |
TreeModel | f | n | |
XGBModel | f | n | S |
XGBDARTModel | f | n | S |
XGBLinearModel | f | n | S |
XGBTreeModel | f | n | S |
Categorical: b = binary, f = factor, o = ordered
Continuous: m = matrix, n = numeric
Survival: S = Surv
Models may be combined, tuned, or selected with the following meta-model
functions.
ModelSpecification | Model specification |
StackedModel | Stacked regression |
SuperModel | Super learner |
SelectedModel | Model selection from a candidate set |
TunedModel | Model tuning over a parameter grid |
modelinfo
, fit
, resample