Learn R Programming

MantelCorr (version 1.42.0)

ClusterGeneList: Generate Genes from a Cluster List

Description

'ClusterGeneList' produces a list of both significant and nonsignificant genes from each respective cluster type

Usage

ClusterGeneList(clus, clustlist.sig, x.data)

Arguments

clus
'clusters' object returned by 'GetClusters'
clustlist.sig
'SignificantClusters' object returned by 'ClusterList'
x.data
original (p x n) numeric data matrix (e.g., gene-expression data)

Value

A list with components:
SignificantClusterGenes
significant cluster genes returned from 'ClusterList'
NonSignificantClusterGenes
nonsignificant cluster genes returned from 'ClusterList'

See Also

'GetClusters' 'ClusterList'

Examples

Run this code

# simulate a p x n microarray expression dataset, where p = genes and n = samples
data.sep <- rbind(matrix(rnorm(1000), ncol=50), matrix(rnorm(1000, mean=5), ncol=50))
noise <- matrix(runif(40000), ncol=1000)
data <- t(cbind(data.sep, noise))
data <- data[1:200, ]
# data has p = 1,050 genes and n = 40 samples

clusters.result <- GetClusters(data, 100, 100)
dist.matrices <- DistMatrices(data, clusters.result$clusters)
mantel.corrs <- MantelCorrs(dist.matrices$Dfull, dist.matrices$Dsubsets)
permutation.result <- PermutationTest(dist.matrices$Dfull, dist.matrices$Dsubsets, 100, 40, 0.05)

# generate both significant and non-significant gene clusters
cluster.list <- ClusterList(permutation.result, clusters.result$cluster.sizes, mantel.corrs)

# significant and non-significant cluster genes (expression values)
cluster.genes <- ClusterGeneList(clusters.result$clusters, cluster.list$SignificantClusters, data)

Run the code above in your browser using DataLab