Learn R Programming

MatchingFrontier (version 1.0.0)

plotEstimates: Plot estimates along the frontier.

Description

plotEstimates() plots estimates along the frontier.

Usage

plotEstimates(estimates.object, xlab = 'Number of Observations Pruned', ylab = 'Estimate', main = 'Effects Plot', xlim = NULL, ylim = NULL, mod.dependence.col = rgb(255,0,0,127, maxColorValue=255), mod.dependence.border.col = rgb(255,0,0,200, maxColorValue=255), line.col = rgb(102,0,0,255, maxColorValue=255), ...)

Arguments

estimates.object
An object generated by estimateEffects()
xlab
The label for the x-axis. Defaults to 'Number of Observations Pruned'.
ylab
The label for the y-axis. Defaults to 'Estimate'.
main
The main label. Defaults to 'Effects Plot'.
xlim
The x-axis limits.
ylim
The y-axis limits.
...
Additional arguments to be passed to plot.
mod.dependence.col
The color to shade the model dependence region.
mod.dependence.border.col
The model dependence region border color.
line.col
The color of the line displaying point estimates.

Details

plotEstimates() wraps plot and uses ... to pass additional arguments to the base plot() function, like color, axis range, etc.

References

King, Gary, Christopher Lucas, and Richard Nielsen. "The Balance-Sample Size Frontier in Matching Methods for Causal Inference." (2015).

Examples

Run this code
data(lalonde)

match.on <- colnames(lalonde)[!(colnames(lalonde) %in% c('re78', 'treat'))]
my.frontier <- makeFrontier(dataset = lalonde,
                            treatment = 'treat',
                            outcome = 're78',
                            match.on = match.on)

base.form <- as.formula('re78 ~ treat + age + education
                         + black + hispanic + married +
                         nodegree + re74 + re75')
## Not run: 
# my.estimates <- estimateEffects(my.frontier,
#                                 're78 ~ treat',
#                                 mod.dependence.formula = base.form,
#                                 continuous.vars = c('age', 'education', 're74', 're75'),
#                                 prop.estimated = .1,
#                                 means.as.cutpoints = TRUE)
# 
# plotEstimates(my.estimates)
# ## End(Not run)

Run the code above in your browser using DataLab