set.seed(27)
m <- matrix(round(rnorm(25),2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
(m <- round(cov2cor(m), 2))
str(near.m <- nearPD(m, trace = TRUE))
round(near.m$mat, 2)
norm(m - near.m$mat) # 1.102
if(require("sfsmisc")) {
m2 <- posdefify(m) # a simpler approach
norm(m - m2) # 1.185, i.e., slightly "less near"
}
round(nearPD(m, only.values=TRUE), 9)
## A longer example, extended from Jens' original,
## showing the effects of some of the options:
pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
0.477, 1, 0.516, 0.233, 0.682, 0.75,
0.644, 0.516, 1, 0.599, 0.581, 0.742,
0.478, 0.233, 0.599, 1, 0.741, 0.8,
0.651, 0.682, 0.581, 0.741, 1, 0.798,
0.826, 0.75, 0.742, 0.8, 0.798, 1),
nrow = 6, ncol = 6)
nc. <- nearPD(pr, conv.tol = 1e-7) # default
nc.$iterations # 2
nc.1 <- nearPD(pr, conv.tol = 1e-7, corr = TRUE)
nc.1$iterations # 11 (!)
ncr <- nearPD(pr, conv.tol = 1e-15)
str(ncr)# 3 iterations
ncr.1 <- nearPD(pr, conv.tol = 1e-15, corr = TRUE)
ncr.1 $ iterations # 27 !
## But indeed, the 'corr = TRUE' constraint did ensure a better solution;
## cov2cor() does not just fix it up equivalently :
norm(pr - cov2cor(ncr$mat)) # = 0.09994
norm(pr - ncr.1$mat) # = 0.08746
Run the code above in your browser using DataLab