# NOT RUN {
p1 <- as(c(2,3,1), "pMatrix")
(sm1 <- as(rep(c(2,3,1), e=3), "indMatrix"))
stopifnot(all(sm1 == p1[rep(1:3, each=3),]))
## row-indexing of a <pMatrix> turns it into an <indMatrix>:
class(p1[rep(1:3, each=3),])
set.seed(12) # so we know '10' is in sample
## random index matrix for 30 observations and 10 unique values:
(s10 <- as(sample(10, 30, replace=TRUE),"indMatrix"))
## Sample rows of a numeric matrix :
(mm <- matrix(1:10, nrow=10, ncol=3))
s10 %*% mm
set.seed(27)
IM1 <- as(sample(1:20, 100, replace=TRUE), "indMatrix")
IM2 <- as(sample(1:18, 100, replace=TRUE), "indMatrix")
(c12 <- crossprod(IM1,IM2))
## same as cross-tabulation of the two index vectors:
stopifnot(all(c12 - unclass(table(IM1@perm, IM2@perm)) == 0))
# 3 observations, 4 implied values, first does not occur in sample:
as(2:4, "indMatrix")
# 3 observations, 5 values, first and last do not occur in sample:
as(list(2:4, 5), "indMatrix")
as(sm1, "ngTMatrix")
s10[1:7, 1:4] # gives an "ngTMatrix" (most economic!)
s10[1:4, ] # preserves "indMatrix"-class
I1 <- as(c(5:1,6:4,7:3), "indMatrix")
I2 <- as(7:1, "pMatrix")
(I12 <- suppressWarnings(rBind(I1, I2)))
stopifnot(is(I12, "indMatrix"),
if(getRversion() >= "3.2.0") identical(I12, rbind(I1, I2)) else TRUE,
colSums(I12) == c(2L,2:4,4:2))
# }
Run the code above in your browser using DataLab