x <- Matrix(rnorm(9), 3, 3)
rcond(x)
## typically "the same" (with more computational effort):
1 / (norm(x) * norm(solve(x)))
rcond(Hilbert(9)) # should be about 9.1e-13
## For non-square matrices:
rcond(x1 <- cbind(1,1:10))# 0.05278
rcond(x2 <- cbind(x1, 2:11))# practically 0, since x2 does not have full rank
## sparse
(S1 <- Matrix(rbind(0:1,0, diag(3:-2))))
rcond(S1)
m1 <- as(S1, "denseMatrix")
all.equal(rcond(S1), rcond(m1))
## wide and sparse
rcond(Matrix(cbind(0, diag(2:-1))))
## Large sparse example ----------
m <- Matrix(c(3,0:2), 2,2)
M <- bdiag(kronecker(Diagonal(2), m), kronecker(m,m))
36*(iM <- solve(M)) # still sparse
MM <- kronecker(Diagonal(10), kronecker(Diagonal(5),kronecker(m,M)))
dim(M3 <- kronecker(bdiag(M,M),MM)) # 12'800 ^ 2
if(interactive()) ## takes about 2 seconds if you have >= 8 GB RAM
system.time(r <- rcond(M3))
## whereas this is *fast* even though it computes solve(M3)
system.time(r. <- rcond(M3, useInv=TRUE))
if(interactive()) ## the values are not the same
c(r, r.) # 0.05555 0.013888
## for all 4 norms available for sparseMatrix :
cbind(rr <- sapply(c("1","I","F","M"),
function(N) rcond(M3, norm=N, useInv=TRUE)))
Run the code above in your browser using DataLab