# NOT RUN {
getClass("sparseVector")
getClass("dsparseVector")
getClass("xsparseVector")# those with an 'x' slot
sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0)
(ss <- as(sx, "sparseVector"))
ix <- as.integer(round(sx))
(is <- as(ix, "sparseVector")) ## an "isparseVector" (!)
(ns <- sparseVector(i= c(7, 3, 2), length = 10)) # "nsparseVector"
## rep() works too:
(ri <- rep(is, length.out= 25))
## Using `dim<-` as in base R :
r <- ss
dim(r) <- c(4,5) # becomes a sparse Matrix:
r
## or coercion (as as.matrix() in base R):
as(ss, "Matrix")
stopifnot(all(ss == print(as(ss, "CsparseMatrix"))))
## currently has "non-structural" FALSE -- printing as ":"
(lis <- is & FALSE)
(nn <- is[is == 0]) # all "structural" FALSE
## NA-case
sN <- sx; sN[4] <- NA
(svN <- as(sN, "sparseVector"))
v <- as(c(0,0,3, 3.2, rep(0,9),-3,0,-1, rep(0,20),5,0),
"sparseVector")
v <- rep(rep(v, 50), 5000)
set.seed(1); v[sample(v@i, 1e6)] <- 0
str(v)
# }
# NOT RUN {
<!-- % Formal class 'dsparseVector' [package "Matrix"] with 3 slots -->
# }
# NOT RUN {
<!-- % ..@ x : num [1:250000] 3.2 -1 -3 3 5 3.2 -3 3 -1 5 ... -->
# }
# NOT RUN {
<!-- % ..@ length: int 9500000 -->
# }
# NOT RUN {
<!-- % ..@ i : int [1:250000] 4 16 52 155 189 194 204 231 244 265 ... -->
# }
# NOT RUN {
system.time(for(i in 1:4) hv <- head(v, 1e6))
## user system elapsed
## 0.033 0.000 0.032
system.time(for(i in 1:4) h2 <- v[1:1e6])
## user system elapsed
## 1.317 0.000 1.319
stopifnot(identical(hv, h2),
identical(is | FALSE, is != 0),
validObject(svN), validObject(lis), as.logical(is.na(svN[4])),
identical(is^2 > 0, is & TRUE),
all(!lis), !any(lis), length(nn@i) == 0, !any(nn), all(!nn),
sum(lis) == 0, !prod(lis), range(lis) == c(0,0))
## create and use the t(.) method:
t(x20 <- sparseVector(c(9,3:1), i=c(1:2,4,7), length=20))
(T20 <- toeplitz(x20))
stopifnot(is(T20, "symmetricMatrix"), is(T20, "sparseMatrix"),
identical(unname(as.matrix(T20)),
toeplitz(as.vector(x20))))
## c() method for "sparseVector" - also available as regular function
(c1 <- c(x20, 0,0,0, -10*x20))
(c2 <- c(ns, is, FALSE))
(c3 <- c(ns, !ns, TRUE, NA, FALSE))
(c4 <- c(ns, rev(ns)))
## here, c() would produce a list {not dispatching to c.sparseVector()}
(c5 <- c.sparseVector(0,0, x20))
## checking (consistency)
.v <- as.vector
.s <- function(v) as(v, "sparseVector")
stopifnot(
all.equal(c1, .s(c(.v(x20), 0,0,0, -10*.v(x20))), tol=0),
all.equal(c2, .s(c(.v(ns), .v(is), FALSE)), tol=0),
all.equal(c3, .s(c(.v(ns), !.v(ns), TRUE, NA, FALSE)), tol=0),
all.equal(c4, .s(c(.v(ns), rev(.v(ns)))), tol=0),
all.equal(c5, .s(c(0,0, .v(x20))), tol=0)
)
# }
Run the code above in your browser using DataLab