rankMatrix(cbind(1, 0, 1:3)) # 2
(meths <- eval(formals(rankMatrix)$method))
## a "border" case:
H12 <- Hilbert(12)
rankMatrix(H12, tol = 1e-20) # 12; but 11 with default method & tol.
sapply(meths, function(.m.) rankMatrix(H12, method = .m.))
## tolNorm2 qr.R qrLINPACK qr useGrad maybeGrad
## 11 11 12 12 11 11
## The meaning of 'tol' for method="qrLINPACK" and *dense* x is not entirely "scale free"
rMQL <- function(ex, M) rankMatrix(M, method="qrLINPACK",tol = 10^-ex)
rMQR <- function(ex, M) rankMatrix(M, method="qr.R", tol = 10^-ex)
sapply(5:15, rMQL, M = H12) # result is platform dependent
## 7 7 8 10 10 11 11 11 12 12 12 {x86_64}
sapply(5:15, rMQL, M = 1000 * H12) # not identical unfortunately
## 7 7 8 10 11 11 12 12 12 12 12
sapply(5:15, rMQR, M = H12)
## 5 6 7 8 8 9 9 10 10 11 11
sapply(5:15, rMQR, M = 1000 * H12) # the *same*
# \dontshow{
(r12 <- sapply(5:15, rMQR, M = H12))
stopifnot(identical(r12, sapply(5:15, rMQR, M = H12 / 100)),
identical(r12, sapply(5:15, rMQR, M = H12 * 1e5)))
rM1 <- function(ex, M) rankMatrix(M, tol = 10^-ex)
(r12 <- sapply(5:15, rM1, M = H12))
stopifnot(identical(r12, sapply(5:15, rM1, M = H12 / 100)),
identical(r12, sapply(5:15, rM1, M = H12 * 1e5)))
# }
## "sparse" case:
M15 <- kronecker(diag(x=c(100,1,10)), Hilbert(5))
sapply(meths, function(.m.) rankMatrix(M15, method = .m.))
#--> all 15, but 'useGrad' has 14.
sapply(meths, function(.m.) rankMatrix(M15, method = .m., tol = 1e-7)) # all 14
## "large" sparse
n <- 250000; p <- 33; nnz <- 10000
L <- sparseMatrix(i = sample.int(n, nnz, replace=TRUE),
j = sample.int(p, nnz, replace=TRUE), x = rnorm(nnz))
(st1 <- system.time(r1 <- rankMatrix(L))) # warning+ ~1.5 sec (2013)
(st2 <- system.time(r2 <- rankMatrix(L, method = "qr"))) # considerably faster!
r1[[1]] == print(r2[[1]]) ## --> ( 33 TRUE )
stopifnot(r1[[1]] == 33, 33 == r2[[1]])
if(doExtras <- interactive() ||
identical("true", unname(Sys.getenv("R_PKG_CHECKING_doExtras"))))
stopifnot(st2[[1]] < 0.2) # seeing 0.03 (on ~ 2010-hardware; R 3.0.2)
## another sparse-"qr" one, which ``failed'' till 2013-11-23:
set.seed(42)
f1 <- factor(sample(50, 1000, replace=TRUE))
f2 <- factor(sample(50, 1000, replace=TRUE))
f3 <- factor(sample(50, 1000, replace=TRUE))
D <- t(do.call(rbind, lapply(list(f1,f2,f3), as, 'sparseMatrix')))
dim(D); nnzero(D) ## 1000 x 150 // 3000 non-zeros (= 2%)
stopifnot(rankMatrix(D, method='qr') == 148,
rankMatrix(crossprod(D),method='qr') == 148)
## zero matrix has rank 0 :
stopifnot(sapply(meths, function(.m.)
rankMatrix(matrix(0, 2, 2), method = .m.)) == 0)
Run the code above in your browser using DataLab