Learn R Programming

Matrix (version 1.4-1)

rsparsematrix: Random Sparse Matrix

Description

Generate a random sparse matrix efficiently. The default has rounded gaussian non-zero entries, and rand.x = NULL generates random pattern matrices, i.e. inheriting from nsparseMatrix.

Usage

rsparsematrix(nrow, ncol, density, nnz = round(density * maxE),
              symmetric = FALSE,
              rand.x = function(n) signif(rnorm(n), 2), ...)

Value

a sparseMatrix, say M of dimension (nrow, ncol), i.e., with dim(M) == c(nrow, ncol), if symmetric

is not true, with nzM <- nnzero(M) fulfilling

nzM <= nnz and typically, nzM == nnz.

Arguments

nrow, ncol

number of rows and columns, i.e., the matrix dimension (dim).

density

optional number in \([0,1]\), the density is the proportion of non-zero entries among all matrix entries. If specified it determines the default for nnz, otherwise nnz needs to be specified.

nnz

number of non-zero entries, for a sparse matrix typically considerably smaller than nrow*ncol. Must be specified if density is not.

symmetric

logical indicating if result should be a matrix of class symmetricMatrix. Note that in the symmetric case, nnz denotes the number of non zero entries of the upper (or lower) part of the matrix, including the diagonal.

rand.x

NULL or the random number generator for the x slot, a function such that rand.x(n) generates a numeric vector of length n. Typical examples are rand.x = rnorm, or rand.x = runif; the default is nice for didactical purposes.

...

optionally further arguments passed to sparseMatrix(), notably repr.

Author

Martin Maechler

Details

The algorithm first samples “encoded” \((i,j)\)s without replacement, via one dimensional indices, if not symmetric sample.int(nrow*ncol, nnz), then---if rand.x is not NULL---gets x <- rand.x(nnz) and calls sparseMatrix(i=i, j=j, x=x, ..). When rand.x=NULL, sparseMatrix(i=i, j=j, ..) will return a pattern matrix (i.e., inheriting from nsparseMatrix).

Examples

Run this code
set.seed(17)# to be reproducible
M <- rsparsematrix(8, 12, nnz = 30) # small example, not very sparse
M
M1 <- rsparsematrix(1000, 20,  nnz = 123,  rand.x = runif)
summary(M1)

## a random *symmetric* Matrix
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
nnzero(S9)# ~ 20: as 'nnz' only counts one "triangle"

## a random patter*n* aka boolean Matrix (no 'x' slot):
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))

## a [T]riplet representation sparseMatrix:
T2 <- rsparsematrix(40, 12, nnz = 99, repr = "T")
head(T2)

Run the code above in your browser using DataLab