bdiag(matrix(1:4, 2), diag(3))
## combine "Matrix" class and traditional matrices:
bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2))
mlist <- list(1, 2:3, diag(x=5:3), 27, cbind(1,3:6), 100:101)
bdiag(mlist)
stopifnot(identical(bdiag(mlist),
bdiag(lapply(mlist, as.matrix))))
ml <- c(as(matrix((1:24)%% 11 == 0, 6,4),"nMatrix"),
rep(list(Diagonal(2, x=TRUE)), 3))
mln <- c(ml, Diagonal(x = 1:3))
stopifnot(is(bdiag(ml), "lsparseMatrix"),
is(bdiag(mln),"dsparseMatrix") )
## random (diagonal-)block-triangular matrices:
rblockTri <- function(nb, max.ni, lambda = 3) {
.bdiag(replicate(nb, {
n <- sample.int(max.ni, 1)
tril(Matrix(rpois(n*n, lambda=lambda), n,n)) }))
}
(T4 <- rblockTri(4, 10, lambda = 1))
image(T1 <- rblockTri(12, 20))
##' Fast version of Matrix :: .bdiag() -- for the case of *many* (k x k) matrices:
##' @param lmat list(, , ....., ) where each mat_j is a k x k 'matrix'
##' @return a sparse (N*k x N*k) matrix of class \code{"\linkS4class{dgCMatrix}"}.
bdiag_m <- function(lmat) {
## Copyright (C) 2016 Martin Maechler, ETH Zurich
if(!length(lmat)) return(new("dgCMatrix"))
stopifnot(is.list(lmat), is.matrix(lmat[[1]]),
(k <- (d <- dim(lmat[[1]]))[1]) == d[2], # k x k
all(vapply(lmat, dim, integer(2)) == k)) # all of them
N <- length(lmat)
if(N * k > .Machine$integer.max)
stop("resulting matrix too large; would be M x M, with M=", N*k)
M <- as.integer(N * k)
## result: an M x M matrix
new("dgCMatrix", Dim = c(M,M),
## 'i :' maybe there's a faster way (w/o matrix indexing), but elegant?
i = as.vector(matrix(0L:(M-1L), nrow=k)[, rep(seq_len(N), each=k)]),
p = k * 0L:M,
x = as.double(unlist(lmat, recursive=FALSE, use.names=FALSE)))
}
l12 <- replicate(12, matrix(rpois(16, lambda = 6.4), 4,4), simplify=FALSE)
dim(T12 <- bdiag_m(l12))# 48 x 48
T12[1:20, 1:20]
Run the code above in your browser using DataLab