## Extending the one in examples(lu), calling the matrix A,
## and confirming the factorization identities :
A <- as(readMM(system.file("external/pores_1.mtx",
package = "Matrix")),
"CsparseMatrix")
## with dimnames(.) - to see that they propagate to L, U :
dimnames(A) <- list(paste0("r", seq_len(nrow(A))),
paste0("C", seq_len(ncol(A))))
str(luA <- lu(A)) # p is a 0-based permutation of the rows
# q is a 0-based permutation of the columns
xA <- expand(luA)
## which is simply doing
stopifnot(identical(xA$ L, luA@L),
identical(xA$ U, luA@U),
identical(xA$ P, as(luA@p +1L, "pMatrix")),
identical(xA$ Q, as(luA@q +1L, "pMatrix")))
P.LUQ <- with(xA, t(P) %*% L %*% U %*% Q)
stopifnot(all.equal(unname(A), unname(P.LUQ), tolerance = 1e-12))
## permute rows and columns of original matrix
pA <- A[luA@p + 1L, luA@q + 1L]
PAQ. <- with(xA, P %*% A %*% t(Q))
stopifnot(all.equal(unname(pA), unname(PAQ.), tolerance = 1e-12))
pLU <- drop0(luA@L %*% luA@U) # L %*% U -- dropping extra zeros
stopifnot(all.equal(pA, pLU, tolerance = 1e-12)) # (incl. permuted row- and column-names)
Run the code above in your browser using DataLab