data(sbp.MC)
# How was the data generated
attr(sbp.MC,"mcmc.par")
# Traceplots
trace.MCmcmc(sbp.MC)
trace.MCmcmc(sbp.MC,"beta")
# A MCmcmc object also has class mcmc.list, so we can use the
# standard coda functions for convergence diagnostics:
# acfplot( subset.MCmcmc(sbp.MC,subset="sigma") )
# Have a look at the correlation between the 9 variance parameters
pairs( sbp.MC )
# Have a look at whether the MxI variance components are the same between methods:
if (FALSE) {
pairs( sbp.MC, subset=c("mi"), eq=TRUE,
panel=function(x,y,...)
{
abline(0,1)
abline(v=median(x),h=median(y),col="gray")
points(x,y,...)
}
) }
Run the code above in your browser using DataLab