Learn R Programming

Metrics (version 0.1.4)

ce: Classification Error

Description

ce is defined as the proportion of elements in actual that are not equal to the corresponding element in predicted.

Usage

ce(actual, predicted)

Arguments

actual

The ground truth vector, where elements of the vector can be any variable type.

predicted

The predicted vector, where elements of the vector represent a prediction for the corresponding value in actual.

See Also

accuracy

Examples

Run this code
# NOT RUN {
actual <- c('a', 'a', 'c', 'b', 'c')
predicted <- c('a', 'b', 'c', 'b', 'a')
ce(actual, predicted)
# }

Run the code above in your browser using DataLab