Learn R Programming

MiMIR (version 1.5)

apply.fit: apply.fit

Description

Function to compute the MetaboAge score made by van den Akker et al. on Nightingale metabolomics data-set.

Usage

apply.fit(mat, FIT)

Value

data-frame containing the value of the MetaboAge by van den Akker et al.

Arguments

mat

numeric data-frame with Nightingale-metabolomics

FIT

The betas of the linear regression composing the MetaboAge by van den Akker et al.

Details

Multivariate model indicating the biological age of an individual, based on 56 metabolic features. It was trained using a linear regression in BBMRI-nl, a Consortium of 28 cohorts comprising ~25,000 individuals.

References

This function is constructed to be able to apply the metaboAge as described in: van den Akker Erik B. et al. (2020) Metabolic Age Based on the BBMRI-NL 1H-NMR Metabolomics Repository as Biomarker of Age-related Disease. Circulation: Genomic and Precision Medicine, 13, 541-547, doi:10.1161/CIRCULATIONAHA.114.013116

See Also

QCprep, subset_metabolites_overlap, subset_samples_miss, subset_samples_zero, subset_samples_sd, impute_miss, apply.scale,report.dim

Examples

Run this code
library(MiMIR)

#load the Nightignale metabolomics dataset
metabolic_measures <- synthetic_metabolic_dataset
#Pre-process the metabolic features
prepped_met<-QCprep(as.matrix(metabolic_measures[,metabolites_subsets$MET63]), PARAM_metaboAge)
#Apply the metaboAge
metaboAge<-apply.fit(prepped_met, FIT=PARAM_metaboAge$FIT_COEF)

Run the code above in your browser using DataLab