IcaSet
class is derived from
eSet
, and requires a matrix named dat
as
assayData
member.
eSet
.new("IcaSet")
new("IcaSet",
annotation = character(0),
experimentData = new("MIAME"),
featureData = new("AnnotatedDataFrame"),
phenoData = new("AnnotatedDataFrame"),
protocolData = phenoData[,integer(0)],
dat = new("matrix"),
A=new("data.frame"),
S=new("data.frame"), ...)
This creates an IcaSet
with assayData
implicitly
created to contain dat
. new("IcaSet",
annotation = character(0),
assayData = assayDataNew(dat=new("matrix")),
experimentData = new("MIAME"),
featureData = new("AnnotatedDataFrame"),
phenoData = new("AnnotatedDataFrame"),
protocolData = phenoData[,integer(0)],
A=new("data.frame"),
S=new("data.frame"), ...)
This creates an IcaSet
with assayData
provided
explicitly. IcaSet
instances are usually created through
new("IcaSet", ...)
. Usually the arguments to new
include dat
('features x samples', e.g a matrix of expression
data), phenoData
('samples x annotations', a
matrix of sample annotations), S
the Source
matrix of the ICA decomposition ('features x comp'), A
the Mixing matrix of the ICA
decomposition ('samples x comp'), annotation
the annotation
package, typeID
the description of the feature and gene IDs. The other attributes can be missing, in which case
they are assigned default values. The function buildIcaSet
is a more convenient way to
create IcaSet
instances, and allows to automatically annotate
the features.eSet
:
annotation
:eSet
assayData
:nrow(phenoData)
. assayData
must contain a matrix
dat
with rows representing features (e.g., reporters)
and columns representing samples. Class:AssayData-class
experimentData
:eSet
featureData
:eSet
phenoData
:eSet
protocolData
:eSet
organism
:chipManu
="illumina"
mart
:useMart
of package biomaRt
. Only useful if no annotation package is available for argument icaSet
.
datByGene
:dat
where
features have been replaced by their annotations (e.g, gene IDs). Rows
represent annotations of the features (e.g., gene IDs) and
columns represent samples.A
:nrow(phenoData)
(dimension: 'samples x comp').S
:nrow(assayData)
(dimension: 'features x comp').SByGene
:nrow(datByGene)
(dimension: 'annotatedFeatures x comp').compNames
:indComp
:witGenes
:chipManu
:chipVersion
:chipManu
="illumina"refSamples
:sampleNames(object)
, i.e in colnames(dat)
.typeID
:datByGene
and SByGene
of the icaSet
.
It must match one of the objects the corresponding package supports
(you can access the list of objects by typing ls("package:packagename")). If
no annotation package is provided, this element is not useful.listFilters(mart)
; where mart is specified as described in useMart
.
If you have directly built the IcaSet at the
gene level (i.e if no annotation package is used), featureID_biomart
and
geneID_biomart
will be identical.listFilters(mart)
; where
mart
is specified as described in function useMart
.
Not useful if you work at the gene level.getComp(IcaSet, ind,
level=c("features","genes"))
level
="features") or gene (level
="genes")
projections from S. Returns a list with two elements:
contrib
the sample contributions and proj
the
feature or gene projections.slotName(IcaSet)
, and
slotName(IcaSet)<-
:slotName
contained in an IcaSet object.IcaSet["slotName"]
, and
IcaSet["slotName"]<-
:slotName
contained in an IcaSet object.A(IcaSet)
, and
A(IcaSet)<-
:A
.S(IcaSet)
, and
S(IcaSet)<-
:S
.Slist(IcaSet)
:SByGene(IcaSet)
, and
SByGene(IcaSet)<-
:SByGene
.SlistByGene(IcaSet)
:organism(IcaSet)
, organism(IcaSet,characte)<-
organism
slot.dat(IcaSet)
, dat(IcaSet,matrix)<-
dat
in the AssayData-class
slot.eSet
:
pData(IcaSet)
, pData(IcaSet,value)<-
:eSet
assayData(IcaSet)
:eSet
sampleNames(IcaSet)
and sampleNames(IcaSet)<-
:eSet
featureNames(IcaSet)
, featureNames(IcaSet, value)<-
:eSet
dims(IcaSet)
:eSet
phenoData(IcaSet)
, phenoData(IcaSet,value)<-
:eSet
varLabels(IcaSet)
, varLabels(IcaSet, value)<-
:eSet
varMetadata(IcaSet)
, varMetadata(IcaSet,value)<-
:eSet
varMetadata(IcaSet)
, varMetadata(IcaSet,value)
eSet
experimentData(IcaSet)
,experimentData(IcaSet,value)<-
:eSet
pubMedIds(IcaSet)
, pubMedIds(IcaSet,value)
eSet
abstract(IcaSet)
:eSet
annotation(IcaSet)
, annotation(IcaSet,value)<-
eSet
protocolData(IcaSet)
, protocolData(IcaSet,value)<-
eSet
combine(IcaSet,IcaSet)
:eSet
storageMode(IcaSet)
, storageMode(IcaSet,character)<-
:eSet
initialize(IcaSet)
:new
; not to be called directly by the user.validObject(IcaSet)
:dat
is a member of
assayData
, and that the number of features, genes, samples,
and components are consistent across all the attributes of the
IcaSet object. checkValidity(IcaSet)
imposes this
validity check, and the validity checks of eSet
.IcaSet[slotName]
, IcaSet[slotName]<-
:slotName
contained in an
IcaSet object.IcaSet[i, j, k]
:makeDataPackage(object, author, email, packageName, packageVersion, license, biocViews, filePath, description=paste(abstract(object), collapse="\n\n"), ...)
makeDataPackage
.show(IcaSet)
:eSet
dim(IcaSet)
, ncol
:eSet
IcaSet[(index)]
:eSet
IcaSet$
, IcaSet$<-
:eSet
IcaSet[[i]]
, IcaSet[[i]]<-
:eSet
eSet-class
, buildIcaSet
,
IcaSet-class
, MineICAParams-class
.
# create an instance of IcaSet
new("IcaSet")
dat <- matrix(runif(100000), nrow=1000, ncol=100)
rownames(dat) <- 1:nrow(dat)
new("IcaSet",
dat=dat,
A=as.data.frame(matrix(runif(1000), nrow=100, ncol=10)),
S=as.data.frame(matrix(runif(10000), nrow=1000, ncol=10), row.names = 1:nrow(dat)))
Run the code above in your browser using DataLab