library(lme4)
#example 1: univariable GLMM
mod.uni = glmer(formula = cbind(Longer, Total - Longer) ~ X + (1 | Subject),
family = binomial(link = "probit"), data = simul_data)
BootEstim.1 <- pseMer(mod.uni, B = 5, ci.type = c("perc"))
BootEstim.uni <- pseMer(mod.uni, B = 100, ci.type = c("perc"))
#example 2: specify custom parameters for multivariable model
mod.multi <- glmer(cbind(faster, slower) ~ speed * vibration + (1 + speed| subject),
family = binomial(link = "probit"), data = vibro_exp3)
fun2mod = function(mer.obj){
#allocate space: 4 parameters (jnd_A, jnd_B, pse_A, pse_B)
jndpse = vector(mode = "numeric", length = 4)
names(jndpse) = c("pse_0", "pse_32","jnd_0", "jnd_32")
jndpse[1] = -fixef(mer.obj)[1]/fixef(mer.obj)[2] #pse_0
jndpse[2] = -(fixef(mer.obj)[1]+fixef(mer.obj)[3])/(fixef(mer.obj)[2]+ fixef(mer.obj)[4]) #pse_0
jndpse[3] = qnorm(0.75)/fixef(mer.obj)[2] #jnd_0
jndpse[4] = qnorm(0.75)/(fixef(mer.obj)[2]+ fixef(mer.obj)[4]) #jnd_32
return(jndpse)
}
BootEstim.multi = pseMer(mod.multi, B = 100, FUN = fun2mod)
Run the code above in your browser using DataLab