Learn R Programming

Momocs (version 1.4.1)

CLUST: Hierarchical clustering

Description

Performs hierarchical clustering through dist and hclust. So far it is mainly a wrapper around these two functions, plus plotting using the dendextend package facilities.

Usage

CLUST(x, ...)

# S3 method for default CLUST(x, ...)

# S3 method for Coe CLUST( x, fac, type = c("horizontal", "vertical", "fan")[1], k, dist_method = "euclidean", hclust_method = "complete", retain = 0.99, labels, lwd = 1/4, cex = 1/2, palette = pal_qual, ... )

Value

a ggplot plot

Arguments

x

a Coe or PCA object

...

useless here

fac

factor specification for fac_dispatcher

type

character one of c("horizontal", "vertical", "fan") (default: horizontal)

k

numeric if provided and greater than 1, cut the tree into this number of groups

dist_method

to feed dist's method argument, that is one of euclidean (default), maximum, manhattan, canberra, binary or minkowski.

hclust_method

to feed hclust's method argument, one of ward.D, ward.D2, single, complete (default), average, mcquitty, median or centroid.

retain

number of axis to retain if a PCA object is passed. If a number < 1 is passed, then the number of PCs retained will be enough to capture this proportion of variance via scree_min

labels

factor specification for labelling tips and to feed fac_dispatcher

lwd

for branches (default: 0.25)

cex

for labels (default: 1)

palette

one of available palettes

See Also

Other multivariate: KMEANS(), KMEDOIDS(), LDA(), MANOVA_PW(), MANOVA(), MDS(), MSHAPES(), NMDS(), PCA(), classification_metrics()

Examples

Run this code
# On Coe
bf <- bot %>% efourier(6)
CLUST(bf)
# with a factor and vertical
CLUST(bf, ~type, "v")
# with some cutting and different dist/hclust methods
CLUST(bf,
      dist_method="maximum", hclust_method="average",
      labels=~type, k=3, lwd=1, cex=1, palette=pal_manual(c("green", "yellow", "red")))

# On PCA
bf %>% PCA %>% CLUST

Run the code above in your browser using DataLab