powered by
A wrapper around stats::cmdscale.
MDS(x, method = "euclidean", k = 2, ...)
what is returned by stats::dist plus $fac. And prepend MDS class to it.
$fac
MDS
any Coe object
a dissiminarity index to feed method in stats::dist (default: euclidean)
method
euclidean
numeric number of dimensions to feed stats::cmdscale (default: 2)
numeric
additional parameters to feed stats::cmdscale
For Details, see vegan::metaMDS
Other multivariate: CLUST(), KMEANS(), KMEDOIDS(), LDA(), MANOVA_PW(), MANOVA(), MSHAPES(), NMDS(), PCA(), classification_metrics()
CLUST()
KMEANS()
KMEDOIDS()
LDA()
MANOVA_PW()
MANOVA()
MSHAPES()
NMDS()
PCA()
classification_metrics()
x <- bot %>% efourier %>% MDS x
Run the code above in your browser using DataLab