# NOT RUN {
# compare "stdize" and "scale"
nmat <- matrix(runif(15, 0, 10), ncol = 3)
stdize(nmat)
scale(nmat)
rootmeansq <- function(v) {
v <- v[!is.na(v)]
sqrt(sum(v^2) / max(1, length(v) - 1L))
}
scale(nmat, center = FALSE)
stdize(nmat, center = FALSE, scale = rootmeansq)
if(require(lme4)) {
# define scale function as twice the SD to reproduce "arm::standardize"
twosd <- function(v) 2 * sd(v, na.rm = TRUE)
# standardize data (scaled variables are prefixed with "z.")
z.CO2 <- stdize(uptake ~ conc + Plant, data = CO2, omit = "Plant", scale = twosd)
summary(z.CO2)
fmz <- stdizeFit(lmer(uptake ~ conc + I(conc^2) + (1 | Plant)), data = z.CO2)
# produces:
# lmer(uptake ~ z.conc + I(z.conc^2) + (1 | Plant), data = z.CO2)
## standardize using scale and center from "z.CO2", keeping the original data:
z.CO2a <- stdize(CO2, source = z.CO2, append = TRUE)
# Here, the "subset" expression uses untransformed variable, so we modify only
# "formula" argument, keeping "subset" as-is. For that reason we needed the
# untransformed variables in "data".
stdizeFit(lmer(uptake ~ conc + I(conc^2) + (1 | Plant),
subset = conc > 100,
), data = z.CO2a, which = "formula", evaluate = FALSE)
# create new data as a sequence along "conc"
newdata <- data.frame(conc = seq(min(CO2$conc), max(CO2$conc), length = 10))
# scale new data using scale and center of the original scaled data:
z.newdata <- stdize(newdata, source = z.CO2)
# }
# NOT RUN {
# plot predictions against "conc" on real scale:
plot(newdata$conc, predict(fmz, z.newdata, re.form = NA))
# }
# NOT RUN {
# compare with "arm::standardize"
# }
# NOT RUN {
library(arm)
fms <- standardize(lmer(uptake ~ conc + I(conc^2) + (1 | Plant), data = CO2))
plot(newdata$conc, predict(fms, z.newdata, re.form = NA))
# }
# NOT RUN {
}
# }
Run the code above in your browser using DataLab