Learn R Programming

MultBiplotR (version 23.11.0)

BinaryDistances: Binary Distances

Description

Calculates distances among rows of a binary data matrix or among the rows of two binary matrices. The end user will use BinaryProximities rather than this function. Input must be a matrix with 0 or 1 values.

Usage

BinaryDistances(x, y = NULL, coefficient= "Simple_Matching", transformation="sqrt(1-S)")

Value

An object of class proximities.This has components:

comp1

Description of 'comp1'

Arguments

x

Main binary data matrix. Distances among rows are calculated if y=NULL.

y

Second binary data matrix. If not NULL the distances among the rows of x and y are calculated

coefficient

Similarity coefficient. Use the name (see details)

transformation

Transformation of the similarities. Use the name (see details)

Author

Jose Luis Vicente-Villardon

Details

The following coefficients are calculated

1.- Kulezynski = a/(b + c)

2.- Russell_and_Rao = a/(a + b + c+d)

3.- Jaccard = a/(a + b + c)

4.- Simple_Matching = (a + d)/(a + b + c + d)

5.- Anderberg = a/(a + 2 * (b + c))

6.- Rogers_and_Tanimoto = (a + d)/(a + 2 * (b + c) + d)

7.- Sorensen_Dice_and_Czekanowski = a/(a + 0.5 * (b + c))

8.- Sneath_and_Sokal = (a + d)/(a + 0.5 * (b + c) + d)

9.- Hamman = (a - (b + c) + d)/(a + b + c + d)

10.- Kulezynski = 0.5 * ((a/(a + b)) + (a/(a + c)))

11.- Anderberg2 = 0.25 * (a/(a + b) + a/(a + c) + d/(c + d) + d/(b + d))

12.- Ochiai = a/sqrt((a + b) * (a + c))

13.- S13 = (a * d)/sqrt((a + b) * (a + c) * (d + b) * (d + c))

14.- Pearson_phi = (a * d - b * c)/sqrt((a + b) * (a + c) * (d + b) * (d + c))

15.- Yule = (a * d - b * c)/(a * d + b * c)

The following transformations of the similarity3 are calculated

1.- `Identity` dis=sim

2.- `1-S` dis=1-sim

3.- `sqrt(1-S)` dis = sqrt(1 - sim)

4.- `-log(s)` dis=-1*log(sim)

5.- `1/S-1` dis=1/sim -1

6.- `sqrt(2(1-S))` dis== sqrt(2*(1 - sim))

7.- `1-(S+1)/2` dis=1-(sim+1)/2

8.- `1-abs(S)` dis=1-abs(sim)

9.- `1/(S+1)` dis=1/(sim)+1

References

Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley

See Also

PrincipalCoordinates

Examples

Run this code
data(spiders)

Run the code above in your browser using DataLab