Learn R Programming

MultBiplotR (version 23.11.0)

MGC: Mixture Gaussian Clustering

Description

Model based clustering using mixtures of gaussian distriutions.

Usage

MGC(x, NG = 2, init = "km", RemoveOutliers=FALSE, ConfidOutliers=0.995, 
tolerance = 1e-07, maxiter = 100, show=TRUE, ...)

Value

Clusters

Arguments

x

The data matrix

NG

Number of groups or clusters to obtain

init

Initial centers can be obtained from k-means ("km") or at random ("rd")

RemoveOutliers

Should the extreme values be removed to calculate the clusters?

ConfidOutliers

Percentage of the points to keep for the calculations when RemoveOutliers is true.

tolerance

Tolerance for convergence

maxiter

Maximum number of iterations

show

Should the likelihood at each iteration be shown?

...

Maximum number of iterationsAny other parameter that can affect k-means if that is the initial configuration

Author

Jose Luis Vicente Villardon

Details

A basic algorithm for clustering with mixtures of gaussians with no restrictions on the covariance matrices

References

Me falta

Examples

Run this code
X=as.matrix(iris[,1:4])
mod1=MGC(X,NG=3)
plot(iris[,1:4], col=mod1$Classification)
table(iris[,5],mod1$Classification)

Run the code above in your browser using DataLab