Learn R Programming

MultBiplotR (version 23.11.0)

WeightedPCoA: Weighted Principal Coordinates Analysis

Description

Weighted Principal Coordinates Analysis

Usage

WeightedPCoA(Proximities, 
  weigths = matrix(1,dim(Proximities$Proximities)[1],1), 
  dimension = 2, tolerance=0.0001)

Value

data(spiders) dist=BinaryProximities(spiders) pco=WeightedPCoA(dist) An object of class Principal.Coordinates

Arguments

Proximities

A matrix containing the proximities among a set of objetcs

weigths

Weigths

dimension

Dimension of the solution

tolerance

Tolerance for the eigenvalues

Author

Jose Luis Vicente-Villardon

Details

Weighted Principal Coordinates Analysis

References

Gower, J. C. (2006) Similarity dissimilarity and Distance, measures of. Encyclopedia of Statistical Sciences. 2nd. ed. Volume 12. Wiley

Gower, J.C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325-338.

J.R. Demey, J.L. Vicente-Villardon, M.P. Galindo, A.Y. Zambrano, Identifying molecular markers associated with classifications of genotypes by external logistic biplot, Bioinformatics 24 (2008) 2832.

Cuadras, C. M., Fortiana, J. Metric scaling graphical representation of Categorical Data. Proceedings of Statistics Day, The Center for Multivariate Analysis, Pennsylvania State University, Part 2, pp.1-27, 1995.

See Also

BinaryProximities

Examples

Run this code
data(spiders)
dist=BinaryProximities(spiders)
pco=WeightedPCoA(dist)

Run the code above in your browser using DataLab