The "MNM"
class represents a multi-species N-mixture model object fitted using Nimble.
It contains key model outputs, including parameter estimates, input data, predictions,
log-likelihood, convergence diagnostics, and model summaries.
summary
A data.frame
summarizing the model output, including posterior means, standard deviations, and convergence diagnostics (e.g., Rhat values).
n_parameters
A numeric value indicating the number of parameters estimated in the model.
estimates
Mean estimates for all monitored parameters.
fitted_Y
An array containing the fitted values (predicted responses) for the model.
data
An array containing the input data used to fit the model.
logLik
A numeric value representing the log-likelihood of the model.
n_converged
A numeric value indicating the number of parameters with Rhat < 1.1, showing convergence.
plot
A list containing traceplots and density plots for all monitored variables.