# Simulate the Covariate Matrix
n = 10; p = 5; K = 2; prob1 = 0.9;
set.seed(2022)
l = sample(1:K, n, replace=TRUE); # node labels
Pi = matrix(0, n, K) # label matrix
for (k in 1:K){
Pi[l == k, k] = 1
}
Q = 0.1*matrix(sign(runif(p*K) - 0.5), nrow = p);
for(i in 1:K){
Q[(i-1)*(p/K)+(1:(p/K)), i] = 0.3; #remark. has a change here
}
W = matrix(0, nrow = n, ncol = K);
for(jj in 1:n) {
pp = rep(1/(K-1), K); pp[l[jj]] = 0;
if(runif(1) <= prob1) {W[jj, 1:K] = Pi[jj, ];}
else
W[jj, sample(K, 1, prob = pp)] = 1;
}
W = t(W)
D0 = Q %*% W
D = matrix(0, n, p)
for (i in 1:n){
D[i,] = rnorm(p, mean = D0[,i], sd = 1);
}
Cov_based(D, 2)
Run the code above in your browser using DataLab