Learn R Programming

⚠️There's a newer version (2.10-0) of this package.Take me there.

NMOF (version 2.2-2)

Numerical Methods and Optimization in Finance

Description

Functions, examples and data from the first and the second edition of "Numerical Methods and Optimization in Finance" by M. Gilli, D. Maringer and E. Schumann (2019, ISBN:978-0128150658). The package provides implementations of optimisation heuristics (Differential Evolution, Genetic Algorithms, Particle Swarm Optimisation, Simulated Annealing and Threshold Accepting), and other optimisation tools, such as grid search and greedy search. There are also functions for the valuation of financial instruments such as bonds and options, for portfolio selection and functions that help with stochastic simulations.

Copy Link

Version

Install

install.packages('NMOF')

Monthly Downloads

1,105

Version

2.2-2

License

GPL-3

Issues

Pull Requests

Stars

Forks

Maintainer

Enrico Schumann

Last Published

October 20th, 2020

Functions in NMOF (2.2-2)

French

Download Datasets from Kenneth French's Data Library
CPPI

Constant-Proportion Portfolio Insurance
LS.info

Local-Search Information
NMOF-internal

Internal NMOF functions
LSopt

Stochastic Local Search
NMOF-package

Numerical Methods and Optimization in Finance
MA

Simple Moving Average
EuropeanCall

Computing Prices of European Calls with a Binomial Tree
GAopt

Optimisation with a Genetic Algorithm
TA.info

Threshold-Accepting Information
TAopt

Optimisation with Threshold Accepting
Shiller

Download Robert Shiller's Data
divRatio

Diversification Ratio
drawdown

Drawdown
SAopt

Optimisation with Simulated Annealing
DEopt

Optimisation with Differential Evolution
NS

Zero Rates for Nelson--Siegel--Svensson Model
NSf

Factor Loadings for Nelson--Siegel and Nelson--Siegel--Svensson
PSopt

Particle Swarm Optimisation
fundData

Mutual Fund Returns
gridSearch

Grid Search
bundFuture

Theoretical Valuation of Euro Bund Future
SA.info

Simulated-Annealing Information
callCF

Price a Plain-Vanilla Call with the Characteristic Function
callHestoncf

Price of a European Call under the Heston Model
bundData

German Government Bond Data
mc

Option Pricing via Monte-Carlo Simulation
resampleC

Resample with Specified Rank Correlation
bracketing

Zero-Bracketing
vanillaBond

Pricing Plain-Vanilla Bonds
putCallParity

Put-Call Parity
minvar

Minimum-Variance Portfolios
minCVaR

Minimum Conditional-Value-at-Risk (CVaR) Portfolios
showExample

Display Code Examples
testFunctions

Classical Test Functions for Unconstrained Optimisation
colSubset

Full-rank Column Subset
mvFrontier

Computing Mean--Variance Efficient Portfolios
callMerton

Price of a European Call under Merton's Jump--Diffusion Model
restartOpt

Restart an Optimisation Algorithm
qTable

Prepare LaTeX Table with Quartile Plots
optionData

Option Data
greedySearch

Greedy Search
vanillaOptionEuropean

Pricing Plain-Vanilla Options (European and American)
xwGauss

Integration of Gauss-type
trackingPortfolio

Compute a Tracking Portfolio
xtContractValue

Contract Value of Australian Government Bond Future
randomReturns

Create a Random Returns
repairMatrix

Repair an Indefinite Correlation Matrix
pm

Partial Moments