Learn R Programming

NPCD (version 1.0-11)

Nonparametric Methods for Cognitive Diagnosis

Description

An array of nonparametric and parametric estimation methods for cognitive diagnostic models, including nonparametric classification of examinee attribute profiles, joint maximum likelihood estimation (JMLE) of examinee attribute profiles and item parameters, and nonparametric refinement of the Q-matrix, as well as conditional maximum likelihood estimation (CMLE) of examinee attribute profiles given item parameters and CMLE of item parameters given examinee attribute profiles. Currently the nonparametric methods in the package support both conjunctive and disjunctive models, and the parametric methods in the package support the DINA model, the DINO model, the NIDA model, the G-NIDA model, and the R-RUM model.

Copy Link

Version

Install

install.packages('NPCD')

Monthly Downloads

304

Version

1.0-11

License

LGPL (>= 2.1)

Maintainer

Yi Zheng

Last Published

November 15th, 2019

Functions in NPCD (1.0-11)

AlphaMLE

Maximum likelihood estimation of attribute profile
Data.DINA

Example dataset generated using DINA model
Data.Qrefine

Example dataset used for the Qrefine function
JMLE

Joint maximum likelihood estimation of item parameters and examinee attribute profiles
AlphaNP

Nonparametric estimation of attribute profiles
CDL

Log-likelihood for cognitive diagnostic models
Data.DINO

Example dataset generated using DINO model
ModelFit

Compute overall model fit statistics for outputs generated by estimation functions in the package
CDP

Probability of correct response for cognitive diagnostic models
ItemFit

Compute item fit statistics for outputs generated by estimation functions in the package
NPCD-package

NPCD: The R Package for Nonparametric Methods for Cognitive Diagnosis
ParMLE

Maximum likelihood estimation of item parameters for cognitive diagnostic models.
plot.NPCD

Produce diagnostic plots
Qrefine

Refine the Q-matrix by minimizing the residual sum of square (RSS)
print.NPCD

Print outputs generated from the functions in the package.