rm(list=ls())
#Number of data
n <- 500
d <- 4
#n <- 2000
set.seed(1234)
#set.seed(123)
#set.seed(4321)
# Sample data
m <- matrix(nrow=d, ncol=4, c(-1, 1, 1.5, 2, 2, -2, -1.5, -2))
p <- c(0.2, 0.1, 0.4, 0.3) # frequence des clusters
sdev <- array(dim=c(d,d,4))
sdev[, ,1] <- 0.3*diag(d)
sdev[, ,2] <- c(0.1, 0.3)*diag(d)
sdev[, ,3] <- matrix(nrow=d, ncol=d, 0.15)
diag(sdev[, ,3]) <- 0.3
sdev[, ,4] <- 0.3*diag(d)
c <- rep(0,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
z[,k] <- m[, c[k]] + sdev[, , c[k]]%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
#cat(k, "/", n, " observations simulated\n", sep="")
}
# Set parameters of G0
hyperG0 <- list()
hyperG0[["mu"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["nu"]] <- d+2
hyperG0[["lambda"]] <- diag(d)/10
# hyperprior on the Scale parameter of DPM
a <- 0.0001
b <- 0.0001
# Number of iterations
N <- 30
# do some plots
doPlot <- TRUE
nbclust_init <- 30
## Data
########
library(ggplot2)
p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
+ geom_point()
+ ggtitle("Toy example Data"))
p
## alpha priors plots
#####################
prioralpha <- data.frame("alpha"=rgamma(n=5000, shape=a, scale=1/b),
"distribution" =factor(rep("prior",5000),
levels=c("prior", "posterior")))
p <- (ggplot(prioralpha, aes(x=alpha))
+ geom_histogram(aes(y=..density..),
colour="black", fill="white", bins=30)
+ geom_density(alpha=.6, fill="red", color=NA)
+ ggtitle(paste("Prior distribution on alpha: Gamma(", a,
",", b, ")\n", sep=""))
+ theme_bw()
)
p
if(interactive()){
# Gibbs sampler for Dirichlet Process Mixtures
##############################################
MCMCsample <- DPMGibbsN(z, hyperG0, a, b, N=500, doPlot, nbclust_init, plotevery=100,
gg.add=list(theme_bw(),
guides(shape=guide_legend(override.aes = list(fill="grey45")))),
diagVar=FALSE)
plot_ConvDPM(MCMCsample, from=2)
s <- summary(MCMCsample, burnin = 200, thin=2, posterior_approx=FALSE,
lossFn = "MBinderN")
F <- FmeasureC(pred=s$point_estim$c_est, ref=c)
postalpha <- data.frame("alpha"=MCMCsample$alpha[50:500],
"distribution" = factor(rep("posterior",500-49),
levels=c("prior", "posterior")))
p <- (ggplot(postalpha, aes(x=alpha))
+ geom_histogram(aes(y=..density..), binwidth=.1,
colour="black", fill="white")
+ geom_density(alpha=.2, fill="blue")
+ ggtitle("Posterior distribution of alpha\n")
# Ignore NA values for mean
# Overlay with transparent density plot
+ geom_vline(aes(xintercept=mean(alpha, na.rm=TRUE)),
color="red", linetype="dashed", size=1)
)
p
p <- (ggplot(drop=FALSE, alpha=.6)
+ geom_density(aes(x=alpha, fill=distribution),
color=NA, alpha=.6,
data=prioralpha)
#+ geom_density(aes(x=alpha, fill=distribution),
# color=NA, alpha=.6,
# data=postalpha)
+ ggtitle("Prior and posterior distributions of alpha\n")
+ scale_fill_discrete(drop=FALSE)
+ theme_bw()
+xlim(0,10)
+ylim(0, 1.3)
)
p
}
# k-means comparison
####################
plot(x=z[1,], y=z[2,], col=kmeans(t(z), centers=4)$cluster,
xlab = "d = 1", ylab= "d = 2", main="k-means with K=4 clusters")
KM <- kmeans(t(z), centers=4)
dataKM <- data.frame("X"=z[1,], "Y"=z[2,],
"Cluster"=as.character(KM$cluster))
dataCenters <- data.frame("X"=KM$centers[,1],
"Y"=KM$centers[,2],
"Cluster"=rownames(KM$centers))
p <- (ggplot(dataKM)
+ geom_point(aes(x=X, y=Y, col=Cluster))
+ geom_point(aes(x=X, y=Y, fill=Cluster, order=Cluster),
data=dataCenters, shape=22, size=5)
+ scale_colour_discrete(name="Cluster")
+ ggtitle("K-means with K=4 clusters\n"))
p
Run the code above in your browser using DataLab