Learn R Programming

NPflow (version 0.13.5)

DPMGibbsSkewT: Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions

Description

Slice Sampling of Dirichlet Process Mixture of skew Student's t-distributions

Usage

DPMGibbsSkewT(
  z,
  hyperG0,
  a = 1e-04,
  b = 1e-04,
  N,
  doPlot = TRUE,
  nbclust_init = 30,
  plotevery = N/10,
  diagVar = TRUE,
  use_variance_hyperprior = TRUE,
  verbose = TRUE,
  ...
)

Value

a object of class DPMclust with the following attributes:

mcmc_partitions:

a list of length N. Each element mcmc_partitions[n] is a vector of length n giving the partition of the n observations.

alpha:

a vector of length N. cost[j] is the cost associated to partition c[[j]]

U_SS_list:

a list of length N containing the lists of sufficient statistics for all the mixture components at each MCMC iteration

weights_list:

a list of length N containing the weights of each mixture component for each MCMC iterations

logposterior_list:

a list of length N containing the logposterior values at each MCMC iterations

data:

the data matrix d x n with d dimensions in rows and n observations in columns

nb_mcmcit:

the number of MCMC iterations

clust_distrib:

the parametric distribution of the mixture component - "skewt"

hyperG0:

the prior on the cluster location

Arguments

z

data matrix d x n with d dimensions in rows and n observations in columns.

hyperG0

parameters of the prior mixing distribution in a list with the following named components:

  • "b_xi": a vector of length d with the mean location prior parameter. Can be set as the empirical mean of the data in an Empirical Bayes fashion.

  • "b_psi": a vector of length d with the skewness location prior parameter. Can be set as 0 a priori.

  • "kappa": a strictly positive number part of the inverse-Wishart component of the prior on the variance matrix. Can be set as very small (e.g. 0.001) a priori.

  • "D_xi": hyperprior controlling the information in \(\xi\) (the larger the less information is carried). 100 is a reasonable value, based on Fruhwirth-Schnatter et al., Biostatistics, 2010.

  • "D_psi": hyperprior controlling the information in \(\psi\) (the larger the less information is carried). 100 is a reasonable value, based on Fruhwirth-Schnatter et al., Biostatistics, 2010

  • "nu": a prior number on the degrees of freedom of the \(t\) component that must be strictly greater than d. Can be set as d + 1 for instance.

  • "lambda": a d x d symmetric definitive positive matrix part of the inverse-Wishart component of the prior on the variance matrix. Can be set as the diagonal of empirical variance of the data in an Empircal Bayes fashion divided by a factor 3 according to Fruhwirth-Schnatter et al., Biostatistics, 2010.

a

shape hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001.

b

scale hyperparameter of the Gamma prior on the concentration parameter of the Dirichlet Process. Default is 0.0001. If 0, then the concentration is fixed set to a.

N

number of MCMC iterations.

doPlot

logical flag indicating whether to plot MCMC iteration or not. Default to TRUE.

nbclust_init

number of clusters at initialization. Default to 30 (or less if there are less than 30 observations).

plotevery

an integer indicating the interval between plotted iterations when doPlot is TRUE.

diagVar

logical flag indicating whether the variance of each cluster is estimated as a diagonal matrix, or as a full matrix. Default is TRUE (diagonal variance).

use_variance_hyperprior

logical flag indicating whether a hyperprior is added for the variance parameter. Default is TRUE which decrease the impact of the variance prior on the posterior. FALSE is useful for using an informative prior.

verbose

logical flag indicating whether partition info is written in the console at each MCMC iteration.

...

additional arguments to be passed to plot_DPMst. Only used if doPlot is TRUE.

Author

Boris Hejblum

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209> <arXiv: 1702.04407> https://arxiv.org/abs/1702.04407 tools:::Rd_expr_doi("10.1214/18-AOAS1209")

Fruhwirth-Schnatter S, Pyne S, Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions, Biostatistics, 2010.

Examples

Run this code
rm(list=ls())

#Number of data
n <- 2000
set.seed(4321)


d <- 2
ncl <- 4

# Sample data
library(truncnorm)

sdev <- array(dim=c(d,d,ncl))

#xi <- matrix(nrow=d, ncol=ncl, c(-1.5, 1.5, 1.5, 1.5, 2, -2.5, -2.5, -3))
#xi <- matrix(nrow=d, ncol=ncl, c(-0.5, 0, 0.5, 0, 0.5, -1, -1, 1))
xi <- matrix(nrow=d, ncol=ncl, c(-0.2, 0.5, 2.4, 0.4, 0.6, -1.3, -0.9, -2.7))
psi <- matrix(nrow=d, ncol=4, c(0.3, -0.7, -0.8, 0, 0.3, -0.7, 0.2, 0.9))
nu <- c(100,25,8,5)
p <- c(0.15, 0.05, 0.5, 0.3) # frequence des clusters
sdev[, ,1] <- matrix(nrow=d, ncol=d, c(0.3, 0, 0, 0.3))
sdev[, ,2] <- matrix(nrow=d, ncol=d, c(0.1, 0, 0, 0.3))
sdev[, ,3] <- matrix(nrow=d, ncol=d, c(0.3, 0.15, 0.15, 0.3))
sdev[, ,4] <- .3*diag(2)


c <- rep(0,n)
w <- rep(1,n)
z <- matrix(0, nrow=d, ncol=n)
for(k in 1:n){
 c[k] = which(rmultinom(n=1, size=1, prob=p)!=0)
 w[k] <- rgamma(1, shape=nu[c[k]]/2, rate=nu[c[k]]/2)
 z[,k] <- xi[, c[k]] + psi[, c[k]]*rtruncnorm(n=1, a=0, b=Inf, mean=0, sd=1/sqrt(w[k])) +
                (sdev[, , c[k]]/sqrt(w[k]))%*%matrix(rnorm(d, mean = 0, sd = 1), nrow=d, ncol=1)
 #cat(k, "/", n, " observations simulated\n", sep="")
}

# Set parameters of G0
hyperG0 <- list()
hyperG0[["b_xi"]] <- rowMeans(z)
hyperG0[["b_psi"]] <- rep(0,d)
hyperG0[["kappa"]] <- 0.001
hyperG0[["D_xi"]] <- 100
hyperG0[["D_psi"]] <- 100
hyperG0[["nu"]] <- d+1
hyperG0[["lambda"]] <- diag(apply(z,MARGIN=1, FUN=var))/3

 # hyperprior on the Scale parameter of DPM
 a <- 0.0001
 b <- 0.0001



 ## Data
 ########
 library(ggplot2)
 p <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,]), aes(x=X, y=Y))
       + geom_point()
       #+ ggtitle("Simple example in 2d data")
       +xlab("D1")
       +ylab("D2")
       +theme_bw())
 p #pdf(height=8.5, width=8.5)

 c2plot <- factor(c)
 levels(c2plot) <- c("4", "1", "3", "2")
 pp <- (ggplot(data.frame("X"=z[1,], "Y"=z[2,], "Cluster"=as.character(c2plot)))
       + geom_point(aes(x=X, y=Y, colour=Cluster, fill=Cluster))
       #+ ggtitle("Slightly overlapping skew-normal simulation\n")
       + xlab("D1")
       + ylab("D2")
       + theme_bw()
       + scale_colour_discrete(guide=guide_legend(override.aes = list(size = 6, shape=22))))
 pp #pdf(height=7, width=7.5)


 ## alpha priors plots
 #####################
 prioralpha <- data.frame("alpha"=rgamma(n=5000, shape=a, scale=1/b),
                         "distribution" =factor(rep("prior",5000),
                         levels=c("prior", "posterior")))
 p <- (ggplot(prioralpha, aes(x=alpha))
       + geom_histogram(aes(y=..density..),
                        colour="black", fill="white")
       + geom_density(alpha=.2, fill="red")
       + ggtitle(paste("Prior distribution on alpha: Gamma(", a,
                 ",", b, ")\n", sep=""))
      )
 p



if(interactive()){
 # Gibbs sampler for Dirichlet Process Mixtures
 ##############################################
 MCMCsample_st <- DPMGibbsSkewT(z, hyperG0, a, b, N=1500,
                                doPlot=TRUE, nbclust_init=30, plotevery=100,
                               diagVar=FALSE)
 s <- summary(MCMCsample_st, burnin = 1000, thin=10, lossFn = "Binder")
 print(s)
 plot(s, hm=TRUE) #pdf(height=8.5, width=10.5) #png(height=700, width=720)
 plot_ConvDPM(MCMCsample_st, from=2)
 #cluster_est_binder(MCMCsample_st$mcmc_partitions[900:1000])
}

Run the code above in your browser using DataLab