C++ implementation of multivariate structured Normal inverse Wishart probability density function for multiple inputs
mmsNiWpdfC(xi, psi, Sigma, U_xi0, U_psi0, U_B0, U_Sigma0, U_df0, Log = TRUE)
matrix of densities of dimension K x n
data matrix of dimensions p x n
where columns contain the observed
mean vectors.
data matrix of dimensions p x n
where columns contain the observed
skew parameter vectors.
list of length n
of observed variance-covariance matrices,
each of dimensions p x p
.
mean vectors matrix of dimension p x K
, K
being the number of
distributions for which the density probability has to be evaluated.
skew parameter vectors matrix of dimension p x K
.
list of length K
of structured scale matrices,
each of dimensions p x p
.
list of length K
of variance-covariance matrices,
each of dimensions p x p
.
vector of length K
of degree of freedom parameters.
logical flag for returning the log of the probability density
function. Defaults is TRUE
.
Hejblum BP, Alkhassim C, Gottardo R, Caron F and Thiebaut R (2019) Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data. The Annals of Applied Statistics, 13(1): 638-660. <doi: 10.1214/18-AOAS1209>. <arXiv: 1702.04407>. https://arxiv.org/abs/1702.04407 tools:::Rd_expr_doi("10.1214/18-AOAS1209")