Learn R Programming

NetOrigin package

Performs network-based source estimation. Different approaches are available: effective distance median, recursive backtracking, and centrality-based source estimation. Additionally, we provide public transportation network data as well as methods for data preparation, source estimation performance analysis and visualization.

Installation

You can install the latest production version from CRAN

install.packages("NetOrigin", dependencies = TRUE)

or the current development version from GitHub

library("devtools")
install_github("jmanitz/NetOrigin")

Then, load the package

library("NetOrigin")

Example: Effective Distance

data(delayGoe)

# compute effective distance
data(ptnGoe)
goenet <- igraph::as_adjacency_matrix(ptnGoe, sparse=FALSE)
p <- goenet/rowSums(goenet)
eff <- eff_dist(p)
## Computing the effective distance between 257 nodes:
##  1...................................................................................................
##  100...................................................................................................
##  200.........................................................done
# apply effective distance median source estimation
om <- origin(events=delayGoe[10,-c(1:2)], type='edm', distance=eff)
summary(om)
## Effective distance median origin estimation:
## 
## estimated node of origin 91: X.Gotthelf.Leimbach.Strasse 
## 
## auxiliary variables:
##        id          events            wmean             wvar       
##  Min.   :  1   Min.   : 0.0000   Min.   : 5.482   Min.   :0.3987  
##  1st Qu.: 65   1st Qu.: 0.0000   1st Qu.:21.572   1st Qu.:2.2761  
##  Median :129   Median : 0.0000   Median :27.345   Median :2.4050  
##  Mean   :129   Mean   : 0.6459   Mean   :26.948   Mean   :2.4989  
##  3rd Qu.:193   3rd Qu.: 0.0000   3rd Qu.:33.359   3rd Qu.:2.9986  
##  Max.   :257   Max.   :46.0000   Max.   :47.762   Max.   :6.2052  
##      mdist      
##  Min.   :14.34  
##  1st Qu.:20.75  
##  Median :24.23  
##  Mean   :24.92  
##  3rd Qu.:28.88  
##  Max.   :39.16
plot(om, 'mdist', start=1)

plot(om, 'wvar', start=1)

performance(om, start=1, graph=ptnGoe)
##                   start                         est  hitt rank spj dist
## 1 X.Adolf.Hoyer.Strasse X.Gotthelf.Leimbach.Strasse FALSE    2   2 1332

Example: Backtracking

# backtracking origin estimation (Manitz et al., 2016)
ob <- origin(events=delayGoe[10,-c(1:2)], type='backtracking', graph=ptnGoe)
summary(ob)
## Backtracking origin estimation:
## 
## estimated node of origin 87: X.Gesundbrunnen 
## 
## auxiliary variables:
##        id          events            bcount       
##  Min.   :  1   Min.   : 0.0000   Min.   :0.00000  
##  1st Qu.: 65   1st Qu.: 0.0000   1st Qu.:0.00000  
##  Median :129   Median : 0.0000   Median :0.00000  
##  Mean   :129   Mean   : 0.6459   Mean   :0.03891  
##  3rd Qu.:193   3rd Qu.: 0.0000   3rd Qu.:0.00000  
##  Max.   :257   Max.   :46.0000   Max.   :3.00000
plot(ob, start=1)

performance(ob, start=1, graph=ptnGoe)
##                   start             est  hitt rank spj dist
## 1 X.Adolf.Hoyer.Strasse X.Gesundbrunnen FALSE    4   8 5328

Example: Multiple Origins

data(ptnAth)
origin_multiple(events=delayAth[10,-c(1:2)], type='backtracking', graph=ptnAth, no=2)
## [[1]]
## Backtracking origin estimation:
## 
## estimated node of origin 6: 6 
## 
## [[2]]
## Backtracking origin estimation:
## 
## estimated node of origin 1: 1
# edm
athnet <- igraph::as_adjacency_matrix(ptnAth, sparse=FALSE)
p <- athnet/rowSums(athnet)
eff <- eff_dist(p)
## Computing the effective distance between 51 nodes:
##  1...................................................done
origin_multiple(events=delayAth[10,-c(1:2)], type='edm', graph=ptnAth, no=2, distance=eff)
## [[1]]
## Effective distance median origin estimation:
## 
## estimated node of origin 3: 3 
## 
## [[2]]
## Effective distance median origin estimation:
## 
## estimated node of origin 2: 2

References

  • Li, J., J. Manitz, E. Bertuzzo, and E.D. Kolaczyk (2021): Sensor-based localization of epidemic sources on human mobility networks. PLoS Comput Biol 17(1): e1008545. <DOI: 10.1371/journal.pcbi.1008545>

  • Manitz, J., J. Harbering, M. Schmidt, T. Kneib, and A. Schoebel (2017): Source Estimation for Propagation Processes on Complex Networks with an Application to Delays in Public Transportation Systems. Journal of Royal Statistical Society C (Applied Statistics), 66: 521–536. <DOI: 10.1111/rssc.12176>

  • Manitz, J., T. Kneib, M. Schlather, J. Helbing, and D. Brockmann (2014): Origin detection during food-borne disease outbreaks - a case study of the 2011 EHEC/HUS outbreak in Germany. PLoS Currents Outbreaks, 1. <DOI: 10.1371/currents.outbreaks.f3fdeb08c5b9de7c09ed9cbcef5f01f2>

  • Comin, C. H. and da Fontoura Costa, L. (2011) Identifying the starting point of a spreading process in complex networks. Physical Review E, 84. <DOI: 10.1103/PhysRevE.84.056105>

To cite package ‘NetOrigin’ in publications use:

Juliane Manitz (2018). NetOrigin: Origin Estimation for Propagation Processes on Complex Networks. R package version 1.0-3. https://CRAN.R-project.org/package=NetOrigin

Use toBibtex(citation("NetOrigin")) in R to extract BibTeX references.

Copy Link

Version

Install

install.packages('NetOrigin')

Monthly Downloads

151

Version

1.1-6

License

GPL-3

Maintainer

Juliane Manitz

Last Published

September 4th, 2023

Functions in NetOrigin (1.1-6)

performance

generic method for performance evaluation
read_DB_data

Reads a data file as provided by 'Deutsche Bahn' (for internal use).
plot_ptn

A plot method for public transportation networks (PTNs).
stochastic_sib_model

Stochastic SIB model for infected cases simulation
var_wtd_mean_cochran

Computes the variance of a weighted mean following the definition by Cochran (1977; see Gatz and Smith, 1995)
ptn-data

Public transportation network datasets from LinTim software (Integrated Optimization in Public Transportation)
plot_performance

A plot method combining a time series of performance results.
robustness-methods

methods for robustness estimation objects of class robustness
robustness

run robustness analysis for a source estimate by subsampling individual events.
analyze_ptn

analyze public transportation network characteristics
compute_mu_lambda

Compute Mu and Lambda for Source Detection Function
delay-data

Delay propagation data examples simulated by LinTim software
eff_dist

Computation of effective path distance
NetOrigin

Origin Estimation for Propagation Processes on Complex Networks
aggr_data

convert individual event information to aggregated information per network node
initial_condition_sib_model

Provide Initial Condition for Function SIB_SS
origin-methods

methods for origin estimation objects of class origin
origin

Origin Estimation for Propagation Processes on Complex Networks
origin_multiple

Multiple origin estimation using community partitioning