Generates a dependency matrix of the data (index argument is still in testing phase)
depend(
data,
normal = FALSE,
na.data = c("pairwise", "listwise", "fiml", "none"),
index = FALSE,
fisher = FALSE,
progBar = TRUE
)
A set of data
Should data be transformed to a normal distribution?
Defaults to FALSE
. Data is not transformed to be normal.
Set to TRUE
if data should be transformed to be normal
(computes correlations using the cor_auto function)
Should correlation with the latent variable
(i.e., weighted average of all variables) be removed?
Defaults to FALSE
.
Set to TRUE
to remove common latent factor
Should Fisher's Z-test be used to keep significantly higher influences (index only)?
Defaults to FALSE
.
Set to TRUE
to remove non-significant influences
Should progress bar be displayed?
Defaults to TRUE
.
Set to FALSE
for no progress bar
Returns an adjacency matrix of dependencies
Kenett, D. Y., Tumminello, M., Madi, A., Gur-Gershgoren, G., Mantegna, R. N., & Ben-Jacob, E. (2010). Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market. PLoS one, 5, e15032.
Kenett, D. Y., Huang, X., Vodenska, I., Havlin, S., & Stanley, H. E. (2015). Partial correlation analysis: Applications for financial markets. Quantitative Finance, 15, 569-578.
# NOT RUN {
D <- depend(neoOpen)
Dindex <- depend(neoOpen, index = TRUE)
# }
Run the code above in your browser using DataLab