Learn R Programming

NeuralNetTools (version 1.5.0)

layer_lines: Plot connection weights

Description

Plot connection weights in plotnet

Usage

layer_lines(mod_in, h_layer, layer1 = 1, layer2 = 2, out_layer = FALSE, nid, rel_rsc, all_in, pos_col, neg_col, x_range, y_range, line_stag, x_names, layer_x, struct, max_sp, prune_col = NULL, prune_lty = "dashed", skip)

Arguments

mod_in
neural network model object
h_layer
numeric indicating which connections to plot for the layer
layer1
numeric indicating order of first layer (for multiple hiden layers)
layer2
numeric indicating order of second layer (for multiple hiden layers)
out_layer
logical indicating if the lines are for the output layer
nid
logical value indicating if neural interpretation diagram is plotted, default TRUE
rel_rsc
numeric indicating the scaling range for the width of connection weights in a neural interpretation diagram. Default is NULL for no rescaling.
all_in
chr string indicating names of input variables for which connections are plotted, default all
pos_col
chr string indicating color of positive connection weights, default 'black'
neg_col
chr string indicating color of negative connection weights, default 'grey'
x_range
numeric of x axis range for base plot
y_range
numeric of y axis range for base plot
line_stag
numeric value that specifies distance of connection weights from nodes
x_names
chr string for names of input variables
layer_x
numeric indicating locations of layers on x axis
struct
numeric vector for network structure
max_sp
logical indicating if space is maximized in plot
prune_col
chr string indicating color of pruned connections, otherwise not shown
prune_lty
line type for pruned connections, passed to segments
skip
logical to plot connections for skip layer