data(neuraldat)
set.seed(123)
## using numeric input
wts_in <- c(13.12, 1.49, 0.16, -0.11, -0.19, -0.16, 0.56, -0.52, 0.81)
struct <- c(2, 2, 1) #two inputs, two hidden, one output
neuralweights(wts_in, struct = struct)
## using nnet
library(nnet)
mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5, linout = TRUE)
neuralweights(mod)
## Not run:
# ## using RSNNS, no bias layers
#
# library(RSNNS)
#
# x <- neuraldat[, c('X1', 'X2', 'X3')]
# y <- neuraldat[, 'Y1']
# mod <- mlp(x, y, size = 5, linOut = TRUE)
#
# neuralweights(mod)
#
# # pruned model using code from RSSNS pruning demo
# pruneFuncParams <- list(max_pr_error_increase = 10.0, pr_accepted_error = 1.0,
# no_of_pr_retrain_cycles = 1000, min_error_to_stop = 0.01, init_matrix_value = 1e-6,
# input_pruning = TRUE, hidden_pruning = TRUE)
# mod <- mlp(x, y, size = 5, pruneFunc = "OptimalBrainSurgeon",
# pruneFuncParams = pruneFuncParams)
#
# neuralweights(mod)
#
# ## using neuralnet
#
# library(neuralnet)
#
# mod <- neuralnet(Y1 ~ X1 + X2 + X3, data = neuraldat, hidden = 5)
#
# neuralweights(mod)
# ## End(Not run)
Run the code above in your browser using DataLab