## using numeric input
wts_in <- c(13.12, 1.49, 0.16, -0.11, -0.19, -0.16, 0.56, -0.52, 0.81)
struct <- c(2, 2, 1) #two inputs, two hidden, one output
olden(wts_in, struct)
## using nnet
library(nnet)
data(neuraldat)
set.seed(123)
mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5)
olden(mod)
## Not run:
# ## View the difference for a model w/ skip layers
#
# set.seed(123)
#
# mod <- nnet(Y1 ~ X1 + X2 + X3, data = neuraldat, size = 5, skip = TRUE)
#
# olden(mod)
#
# ## using RSNNS, no bias layers
#
# library(RSNNS)
#
# x <- neuraldat[, c('X1', 'X2', 'X3')]
# y <- neuraldat[, 'Y1']
# mod <- mlp(x, y, size = 5)
#
# olden(mod)
#
# ## using neuralnet
#
# library(neuralnet)
#
# mod <- neuralnet(Y1 ~ X1 + X2 + X3, data = neuraldat, hidden = 5)
#
# olden(mod)
#
# ## using caret
#
# library(caret)
#
# mod <- train(Y1 ~ X1 + X2 + X3, method = 'nnet', data = neuraldat, linout = TRUE)
#
# olden(mod)
#
# ## multiple hidden layers
#
# x <- neuraldat[, c('X1', 'X2', 'X3')]
# y <- neuraldat[, 'Y1']
# mod <- mlp(x, y, size = c(5, 7, 6), linOut = TRUE)
#
# olden(mod)
# ## End(Not run)
Run the code above in your browser using DataLab